首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
采用分步加热固相法成功制备了纯度较高的各向同性负热膨胀材料ZrW2O8 。将ZrW2O8 与ZrO2 按一定比例混合, 在1200 ℃烧结24 h 制备了热膨胀系数可控的ZrW2O8 / ZrO2 复合材料。研究结果表明, 通过改变ZrW2O8 的体积分数, ZrW2O8 / ZrO2 复合材料的热膨胀系数可以控制为负、正或零。当ZrW2O8 的体积分数为37 %时, 复合材料的热膨胀系数接近零。为了得到致密的ZrW2O8 / ZrO2 复合陶瓷, 采用Al2O3 作为烧结剂, 取得了较好的效果。0. 35 wt % Al2O3 的加入可以在不影响复合材料热膨胀性能的前提下, 显著提高复合材料的致密度。   相似文献   

2.
采用固相法成功制备了纯度较高的各向异性负热膨胀材料Sc2W3O12。将ZrO2与Sc2W3O12按一定体积比混合, 在1200 ℃烧结10 h制备Sc2W3O12/ZrO2复合材料。通过XRD、SEM、EDS和热膨胀仪对合成样品的晶体结构、断面形貌和热膨胀性能进行表征。结果表明: 样品组元为正交相Sc2W3O12和单斜相ZrO2; 在 30~600 ℃内, Sc2W3O12/ZrO2复合材料的热膨胀系数皆线性一致, 并且通过改变Sc2W3O12的体积分数, 其热膨胀系数可以控制为正、负或零, 其中60%Sc2W3O12/ZrO2复合材料在30~600 ℃的平均热膨胀系数为0.026×10-6-1, 近似为0。  相似文献   

3.
热膨胀是影响复合材料性能和使用寿命的主要因素之一。为研究具有低/负热膨胀的复合材料,本文以碳纤维粉、ZrW2O8颗粒和环氧树脂为原料,采用模压法制备了Cf-ZrW2O8/9621环氧树脂基复合材料,研究了碳纤维粉和ZrW2O8颗粒含量对复合材料热膨胀行为的影响规律,并分析了不同温度区间内Cf-ZrW2O8/9621环氧树脂基复合材料热膨胀的变化规律。研究结果表明:在30~200℃范围内,当ZrW2O8颗粒含量不变时,随着碳纤维粉含量的增加复合材料的平均热膨胀系数逐渐降低,其中碳纤维粉含量增加到12%时,复合材料的平均热膨胀系数最低,为29.9×10-6/℃,降低了约60%;当碳纤维粉含量不变时,ZrW2O8颗粒含量逐渐增加到12%时,复合材料的平均热膨胀系数呈现...  相似文献   

4.
化学共沉淀法合成低热膨胀ZrW2O8/ZrO2复合材料   总被引:2,自引:2,他引:0       下载免费PDF全文
采用化学共沉淀法合成前驱体,前驱体经1150℃烧结得到ZrW2O8/ZrO2复合材料.对ZrW2O8/ZrO2前驱体进行傅里叶变换红外光谱、热重-差示扫描量热分析;通过X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)和热膨胀仪对合成样品的晶体结构、断面形貌和热膨胀性能进行表征.研究结果表明:合成的复合材料的组元为α-ZrW2O8和m-zrO2相,化学均匀性良好且易烧结;随着ZrW2O8质量分数增加,复合材料的热膨胀系数减小,其中26%ZrW2O8/ZrO2复合材料在30~600℃的平均热膨胀系数为-0.5649×10-6K-1,近似为0.  相似文献   

5.
以CaO-B2O3-SiO2(CBS)玻璃粉体和Al2O3陶瓷粉体为原料,通过在CBS与Al2O3的质量比固定为50:50的玻璃-陶瓷复合材料中添加适量的Bi2O3作为烧结助熔剂,探讨了Bi2O3助熔剂对CBS/Al2O3复合材料的烧结性能、介电性能、抗弯强度和热膨胀系数的影响规律.研究表明:Bi2O3助熔剂能通过降低CBS玻璃的转变温度和黏度促进CBS/Al2O3复合材料的致密化进程,于880 ℃下烧结即能获得结构较致密、气孔较少的CBS/Al2O3复合材料.然而,过量添加Bi2O3将使玻璃的黏度过低,从而恶化CBS/Al2O3复合材料的烧结性能、介电性能及抗弯强度.当Bi2O3的添加量为CBS/Al2O3复合材料的1.5wt%时,于880 ℃下烧结即能获得最为致密的CBS/Al2O3复合材料,密度为2.82 g·cm-3,这一材料具有良好的介电性能(介电常数为7.21,介电损耗为1.06×10-3),抗弯强度为190.34 MPa,0~300 ℃的热膨胀系数为3.52×10-6 K-1.  相似文献   

6.
颜建辉  康蓉  唐幸  汪异  邱敬文 《复合材料学报》2021,38(11):3747-3756
多相Mo-12Si-8.5B合金是一种很有应用前景的高温结构材料,为了同时提高Mo-12Si-8.5B合金的强度和韧性,提出了采用纳米ZrO2(Y2O3)强韧化具有双峰晶粒度分布Mo-12Si-8.5B复合材料的方法。首先采用溶胶-凝胶和高温氢还原法制备了纳米Mo-ZrO2(Y2O3)复合粉末,然后以纳米Mo-ZrO2(Y2O3)粉末和微米Mo粉末为原材料,采用放电等离子烧结(SPS)技术制备了具有双峰晶粒度分布的Mo-12Si-8.5B-ZrO2(Y2O3)复合材料。结果表明,随着ZrO2(Y2O3)含量的增加,制备的Mo-ZrO2(Y2O3)纳米粉末的粒度和烧结体相对致密度均逐渐减小,ZrO2(Y2O3)含量小于2.5wt%时,烧结体的相对致密度均大于98.1%。当ZrO2(Y2O3)含量为1.5wt%和2.5wt%时,复合材料具有较高的硬度(9.76~9.98 GPa),抗弯强度(672~678 MPa)和断裂韧性(12.68~12.82 MPa·m1/2)。Mo-12Si-8.5B-ZrO2(Y2O3)复合材料中Mo晶粒细化、粗细Mo晶粒的晶界强化和纳米ZrO2(Y2O3)颗粒第二相强化是提高硬度和抗弯强度主要原因;复合材料中粗晶粒Mo和纳米ZrO2(Y2O3)有助于断裂韧性的提高,材料的增韧机制主要是裂纹偏转和裂纹桥接。   相似文献   

7.
ZrO2 (Y2O3) 增韧的氮化硅烧结体的性能及相关系   总被引:2,自引:2,他引:2       下载免费PDF全文
在高温(1400℃) 超高压(4. 2GPa) 下制备Y2O3 部分稳定的ZrO2 增韧的氮化硅烧结体, 通过XRD 及机械性能测试等方法分析ZrO2 的相结构, 研究氮化硅烧结体的增韧机理。结果表明, 烧结体中加入少量的铝粉, 可提高t2ZrO2 的相变能力, 达到利用部分稳定的ZrO2 增韧氮化硅烧结体的目的。稳定剂Y2O3 在ZrO2 中含量小于2. 5mol% 时, t→m 相变量及断裂韧性随Y2O3 含量增加而逐渐提高, 韧性提高来源于相变增韧和微裂纹增韧; Y2O3含量大于2. 5mol% 时, t 相接近100% , 韧性主要来源于相变增韧, 增韧效果随Y2O3 含量增加而逐渐减弱。Y2O3 作为良好的烧结助剂, 促进氮化硅烧结体在超高压下致密化, 烧结体的硬度随Y2O3 含量增加逐渐提高。   相似文献   

8.
负热膨胀材料ZrV2O7与金属Al的复合行为及特性   总被引:1,自引:1,他引:0       下载免费PDF全文
利用湿化学法制备先驱体-煅烧合成制备钒酸锆-ZrV2O7的新技术,采用粉末冶金方法,研究了ZrV2O7与金属Al两类不同材料的复合行为及其热膨胀特性。X射线衍射结果表明:利用上述技术合成的ZrV2O7纯度高,杂质含量极少。采用合成的ZrV2O7粉体与金属Al粉末混合,按不同成形-烧结工艺制备ZrV2O7与金属Al的复合材料试样,经扫描电子显微组织分析、微区电子探针能谱成分分析及X射线衍射分析发现,在一定烧结温度范围内,ZrV2O7与金属Al ( 无论是固态还是熔融态 ) 均表现出了良好的烧结性与浸渍性,但在烧结温度下在ZrV2O7与金属Al之间存在Al对Zr的置换反应,且随温度升高而加剧。用热膨胀仪分别对合成的ZrV2O7及其与金属Al烧结而成的复合材料进行热膨胀特性测试,结果表明:ZrV2O7在400~680K的温度区间具有很强的负膨胀特性;其与金属Al的复合材料虽然仍具有正的热膨胀特性,但其膨胀率较金属Al低得多。   相似文献   

9.
采用低毒的单体N, N-二甲基丙烯酰胺(DMAA)制备了氧化锆增韧氧化铝(ZrO2/Al2O3)坯体。讨论了分散剂的用量、 ZrO2/Al2O3浆料的pH值、 粉体中ZrO2含量、 粉体所占浆料的固相体积分数、 球磨时间、 预混液中DMAA的浓度(质量分数)对ZrO2/Al2O3浆料黏度的影响。并研究了注凝成型ZrO2/Al2O3坯体的性能和显微结构。结果表明, 当浆料pH值为9, 分散剂的添加量为ZrO2/Al2O3粉体质量的0.6%, 球磨时间为6 h, ZrO2/Al2O3浆料具有最小的黏度。固相体积分数的提高和DMAA加入量的增大都会提高ZrO2/Al2O3浆料的黏度, ZrO2的加入会降低浆料的黏度。用DMAA制备得到的ZrO2/Al2O3坯体结构均匀, 抗弯强度达到25 MPa。   相似文献   

10.
Gd2O2S:Tb闪烁陶瓷以其明亮的绿色发光、高能量转换效率和高中子俘获截面而广泛应用于中子成像和工业无损检测等领域,但Gd2O2S:Tb陶瓷中存在的Gd2O3第二相影响其闪烁性能。本工作以H2SO4和Gd2O3为原料,采用水浴法合成Gd2O2S:Tb前驱体,研究了H2SO4与Gd2O3的摩尔比(n)对前驱体和Gd2O2S:Tb粉体性能的影响。前驱体的化学组成随n增大而变化:2Gd2O3·Gd2(SO4)3·x H2O(n<2.00)、Gd2  相似文献   

11.
采用化学共沉淀法合成前驱体,经1150℃ 烧结3.5 h得到近零膨胀26 wt% ZrW2O8/ZrO2复合陶瓷,并利用X射线衍射仪、扫描电镜和热膨胀仪研究了原料中加入Al(NO3)3·9H2O对26 wt% ZrW2O8/ZrO2复合陶瓷的相组成、致密度和热膨胀性能的影响。研究结果表明,少量添加Al(NO3)3·9H2O可有效提高复合材料致密度,所得复合陶瓷的组分仍为立方结构的α-ZrW2O8和单斜的m-ZrO2,其中添加2.21 wt% Al(NO3)3·9H2O的复合材料的致密度达到理论密度的98.67%,且对复合陶瓷的热膨胀性能影响不大。其促进致密化机制为晶界处低熔点液相物质Al2(WO4)3提高了复合材料的烧结性能,消除气孔促进致密化。  相似文献   

12.
综述了ZrWzO8在金属基、氧化物陶瓷基、水泥基和聚合物基复合材料中的应用情况。重点介绍了Cu-ZrW2O8、Al-ZrW2O8、ZrO2-ZrW2O8、Cement-ZrW2O8、Polyimide-ZrW2O8等复合材料的研究成果和存在的问题;提出了ZrW2O8可控热膨胀系数的复合材料未来研究方向。  相似文献   

13.
原位反应固相法合成低热膨胀ZrW_2O_8/ZrO_2复合材料   总被引:1,自引:0,他引:1  
以分析纯ZrO2、WO3为原料,采用分步焙烧-原位反应固相法成功合成了低热膨胀ZrW2、WO8/ZrO2复合材料,着重研究了不同烧结温度和烧结时间对产物的影响.通过X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)和热膨胀仪对合成的ZrW2O8/ZrO2复合材料的晶体结构、断面形貌和热膨胀性能进行表征.研究结果表明,在1125、1150、1200℃烧结6h都可以合成高纯度的ZrW2O8/ZrO2复合材料,其组元为α-ZrW2O8和m-ZrO2相;随烧结时间的延长,衍射半峰宽逐渐减小,晶粒在不断长大,致密度相对提高;随着ZrW2O3质量分数增加,复合材料的热膨胀系数减小,其中25%(质量分数)ZrW2O8/ZrO2复合材料在30~600℃的平均热膨胀系数为0.2153×10-6K-1.  相似文献   

14.
共沉淀法合成ZrO2-ZrW2O8复合材料的工艺研究   总被引:1,自引:0,他引:1  
以硝酸氧锆[ZrO(NO3)2·5H2O]和钨酸铵(H40N10O41W12·xH2O)为原料,采用共沉淀法合成了低热膨胀的ZrO2-ZrW2O8复合陶瓷, 着重研究了不同热处理条件对前驱体转变为ZrO2-ZrW2O8复合陶瓷的影响, 并探讨了前驱体生成及其转变的反应历程. 通过X射线衍射仪(XRD)、热重-差示扫描量热(TG-DSC)、扫描电子显微镜(SEM)、热膨胀仪等分析手段对样品的晶体结构、物相转变、断面微观形貌和热膨胀性能进行表征. 结果表明: 采用共沉淀法制备的前驱体在1150℃热处理2h可以合成高纯度、混合均匀的ZrO2-ZrW2O8复合陶瓷; 随烧结时间的延长, ZrW2O8衍射峰半高宽逐渐减小, 晶粒在不断长大; ZrO2-50wt%ZrW2O8复合陶瓷在30~600℃内的平均热膨胀系数为-3.2295×10-6K-1.  相似文献   

15.
Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能   总被引:1,自引:0,他引:1  
采用固相反应法合成了5mol%Y2O3与5mol%Gd2O3共掺杂SrZrO3(Sr(Zr0.9Y0.05Gd0.05)O2.95,SZYG)粉末.采用X射线衍射(XRD)和差示扫描量热仪(DSC)分别研究了SZYG粉末在1450℃长期热处理后以及200~1400℃范围内的相稳定性.采用高温热膨胀仪测量了SZYG块材的热膨胀系数,结果表明:通过Y2O3与Gd2O3共掺杂改性可以明显抑制SrZrO3的相转变.在1000℃下SZYG块材的热导率是~1.36 W/(m.K),与SrZrO3和8YSZ块材相比降低~35%SZYG分别与8YSZ和Al2O3在1250℃热处理24 h表现出很好的化学相容性.  相似文献   

16.
以PVP为添加剂,采用溶胶凝胶法制备ZrW_2O_8粉体,研究添加剂对粉体形貌的影响及其负热膨胀特性。对其前驱体进行热重-差热分析(TG-DSC),以X射线粉末衍射(XRD),扫描电子显微镜(SEM)对产物结构及形貌进行表征。结果表明所得粉体为单一立方α-ZrW_2O_8相。加入PVP后,可以有效地改变粉体的形貌,随着加入量的增大,粉体的形貌从无规则的团聚体转变为长棒状、扇形及短棒颗粒。原位X射线粉末衍射分析表明,所得ZrW_2O_8粉体具有良好的负热膨胀特性。  相似文献   

17.
负热膨胀”氧化物材料ZrW2O8的研究现状   总被引:10,自引:0,他引:10  
沈容  王聪  王天民 《无机材料学报》2002,17(6):1089-1094
在0.5-1050K温度区间,ZrW2O8具有强烈的各向同性“负热膨胀”(NTE)效应,其负热膨胀可由骨架结构中存在低能刚性单元模型(RUMs)来解释。本文综述了近几年来对ZrW2O8负热膨胀特性及其负热膨胀机理的研究,并对其相变及相变机制做了综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号