首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
以四水硝酸钙(Ca(NO3)2·4H2O)和九水硅酸钠(Na2SiO3·9H2O)为原料,通过溶液法合成(20℃、60℃、80℃、100℃)的水化硅酸钙,采用XRD、SEM、IR、NMR测试方法研究了温度对水化硅酸钙微观结构的影响规律.结果表明:随着温度的升高(20~100℃),水化硅酸钙中(002)、(101)、(110)和(200)晶面间距逐渐减少;当温度由20℃升高到100℃时,水化硅酸钙中硅氧四面体的聚合度增加了55.6%,其微观形貌由无规则聚集体逐渐变成层状.  相似文献   

2.
近年来,随着混凝土技术的发展,外加剂已成为制备混凝土的重要辅助材料,但外加剂引入的各种离子对水化硅酸钙(C-S-H)的结构及形貌有较大影响.因此综合评述了无机外加剂中不同离子对C-S-H组成、结构及微观形貌的影响:Al3+能够直接参与C-S-H结构的构建;Na+、K+、Cl-可以加速水化反应,促进C-S-H凝胶的生成;...  相似文献   

3.
水化硅酸钙纳米结构研究进展   总被引:6,自引:0,他引:6  
介绍了水化硅酸钙凝胶(C-S-H)的几种主要结构模型,重点阐述了纳米尺度的凝胶模型及其发展。在纳米凝胶模型中C-S-H是由最小结构单元近似为直径小于5nm的胶束堆积而成。根据胶束堆积密度的差异,C-S-H分为高密度和低密度2种不同的凝胶相。总结了现代微观测试手段对C-S-H纳米模型的验证结果,分析了当前研究存在的问题并对今后研究提出了建议。  相似文献   

4.
郑大鹏  方媛  崔宏志 《硅酸盐学报》2023,51(5):1146-1153
水化硅酸钙(C-S-H)作为水泥基胶凝材料的基因,其结构变化对混凝土宏观性能发展至关重要。为了明确纤维素纳米晶(CNCs)在水泥中的改性机理,采用共沉淀法制备C-S-H凝胶,探讨了CNCs的形态效应及成核效应对C-S-H凝胶结构的影响。基于X射线衍射、透射电子显微镜、纳米压痕以及核磁共振等测试,结果显示CNCs表面携带的羟基(—OH)可络合Ca2+,随后与溶液中的SiO42–反应形成C-S-H凝胶,包裹在CNCs周围形成致密的网络结构。CNCs为C-S-H凝胶的沉淀和生长提供了额外的成核位点,促进了C-S-H凝胶聚合度的降低以及链长的缩短,并且显著提升了高密度C-S-H凝胶的含量。  相似文献   

5.
本文以生石灰、纳米二氧化硅和聚氨酯为原料,采用水热合成法制备了纯水化硅酸钙和水化硅酸钙-聚氨酯纳米复合材料,并利用扫描电子显微镜、能谱仪、X射线衍射仪、红外光谱仪和热分析仪对其进行表征测试。结果表明:水化硅酸钙和水化硅酸钙-聚氨酯复合材料的微观组织形貌具有明显差异,随着钙硅摩尔比的增大,出现了Tobermorite相,且随着聚氨酯的加入,该相的结晶度增强;聚氨酯可以嵌入水化硅酸钙层间,使其基底层间间距增大1.038 nm;聚氨酯的加入可以提高水化硅酸钙的热稳定性,且对钙硅比较高的水化硅酸钙改性更有效。  相似文献   

6.
陈娇  于诚  慕儒  余鑫 《硅酸盐通报》2021,40(5):1429-1140
随着纳米技术的不断发展,纳米材料逐步开始应用于传统混凝土材料中,以提高混凝土的各项服役性能。纳米水化硅酸钙(纳米C-S-H)是一种新型的早强纳米复合材料,可通过晶核效应加快水泥早期水化速率,显著提高水泥基材料的早期力学性能,从而提高施工效率,满足特殊施工要求。本文系统总结了纳米C-S-H的制备方法,及纳米C-S-H对水泥基材料早期和长期性能的影响规律,探讨了其对于水泥水化过程和水化产物的影响机制,其中重点介绍了采用聚合物分散纳米颗粒制备的C-S-H/PCE(聚羧酸型减水剂,简称PCE)纳米复合材料。  相似文献   

7.
纳米水化硅酸钙(CSH)是硅酸盐水泥的高效早强晶核剂。以柠檬酸为分散稳定剂,采用成核晶化隔离法合成CSH/柠檬酸纳米复合物,研究了柠檬酸用量对CSH/柠檬酸纳米复合物(CCNs)结构、粒度分布的影响以及CCNs对水泥水化硬化的作用机理。结果表明:柠檬酸可插层进入纳米CSH层间,CCNs的平均粒径在90~160 nm之间,且CCNs中柠檬酸含量越高,其粒径越小,在pH=13的碱性溶液中释放出的柠檬酸越多。CCNs由于自身晶核及柠檬酸的协同作用影响水泥水化,改善了孔结构并提高了12 h、1 d、3 d、7 d及28 d抗压强度。  相似文献   

8.
徐文  武小雷 《硅酸盐通报》2018,37(4):1294-1298
针对钙硅比对水化硅酸钙产品成分与结构影响较大的现象,为了分析这种影响规律,实验过程中按照不同钙硅比配入原料,采用水热合成法制备水化硅酸钙,实验最终得到了钙硅比对产物水化硅酸钙物相微观结构以及聚合度的影响规律.对实验产物进行XRD分析发现,随着钙硅比的升高,分析结果中出现了Tobermorite(托勃莫来石)以及硬钙硅石的相.通过对产物SEM分析发现,随着钙硅比的升高,产物颗粒表面微观结构变得疏松.通过红外分析发现,产物聚合度随着钙硅比的升高而降低.  相似文献   

9.
水化硅酸钙的结构及其变化   总被引:7,自引:2,他引:7  
基于水化硅酸钙应用范围的扩展和混凝土的发展趋势,阐述了水化硅酸钙结构及其变化的研究进展。详细分析了无机和有机组分等因素对水化硅酸钙存在状态的影响。分析了水化硅酸钙与无机或有机组分间的相互结合原理。同时指出有机组分对水化硅酸钙组成结构的影响,是需要进一步深入研究的课题。  相似文献   

10.
聚羧酸类减水剂对水化硅酸钙微观结构的影响   总被引:8,自引:0,他引:8  
用Na2SiO3·9H2O,Ca(NO3)2·4H2O化学试剂及聚羧酸类减水剂合成了水化硅酸钙(C-S-H)及掺杂聚羧酸有机大分子的 C-S-H.用X射线衍射、X射线光电子能谱、透射电镜等分析手段研究了聚羧酸类减水剂对C-S-H结构的影响.研究表明:聚羧酸类减水剂增加了Ca与Si摩尔比n(Ca)/n(Si)为0.83的C-S-H硅氧四面体聚合度,提高了C-S-H的结晶程度,其中聚羧酸有机大分子基团可内插到C-S-H结构的层间.在C-S-H形成过程中,聚羧酸有机大分子基团会通过其极性基团-COOM-与Ca2 键结,而Ca2 另一端与-O-Si-O-键连接,最后形成一个离子型交联结构.  相似文献   

11.
Nanostructure of Calcium Silicate Hydrate Gels in Cement Paste   总被引:3,自引:0,他引:3  
High-resolution electron microscopy study of calcium silicate hydrate (C-S-H) gels in ordinary portland cement (OPC) and a slag/OPC blend has been performed. Nanocrystalline regions on the scale of ∼5 nm or less in C-S-H are found in both cement pastes, and they are formed after a curing time as brief as 7 d. A change in the d -spacing of the nanocrystalline regions with time is observed for the first time, which is believed to correspond to the development of C-S-H with time. The nanoheterogeneous nature of C-S-H is demonstrated and correlated to the strong Ca:Si ratio fluctuations that are observed.  相似文献   

12.
采用沉淀法制备的硅酸钙粉体经成型,在1200℃下常压烧结,制备出高纯的硅酸钙陶瓷,通过模拟体液浸泡对其体外生物活性进行了研究。X射线衍射(XRD)和扫描电镜(SEM)的结果表明:在1200℃下烧结制得的硅酸钙陶瓷主晶相为β型硅酸钙(-βCS);在模拟体液中浸泡14d后其表面可见类骨羟基磷灰石生成,28d后生成大量羟基磷灰石。因此,沉淀法合成的硅酸钙具有良好的诱导类骨羟基磷灰石形成能力和体外生物活性。  相似文献   

13.
水热合成水化硅酸钙(C-S-H)的制备与表征   总被引:1,自引:0,他引:1  
本论文以高纯氧化钙与白炭黑为原料,通过水热法合成了水化硅酸钙(C-S-H).采用XRD、SEM对分别选取温度为100℃、120℃、150℃、180℃水热反应6h的水化硅酸钙样品,与150℃分别反应2h、6h、10 h的样品做了物相变化与显微结构的分析,结果表明在低于120℃时产物为结晶度较低的凝胶,随着温度的升高,水化硅酸钙凝胶的结晶度逐渐提高,在150℃和180℃时,生成结晶度较高的托勃莫来石和硬硅钙石;反应时间从6h延长到10h只提高了晶体的结晶度,而没有改变晶体结构.这一结果对改善蒸压制品的蒸压制度具有重要的指导意义.  相似文献   

14.
常钧  房延凤  李勇 《硅酸盐学报》2014,42(11):1377-1382
废弃水泥石、钢渣等碳酸化固定CO2不仅可以缓解温室效应还可以实现废弃物的再利用,同时制备出性能优良的建材制品。为了研究废弃水泥石矿物组成的碳酸化机理,探讨了钙硅比对水化硅酸钙加速碳化的影响。结果表明:随着钙硅比增加,水化硅酸钙(C-S-H)碳化率逐渐降低,高钙硅比的C-S-H具有相对粗大的孔结构使得早期的碳化速率增加;碳化产物中文石、球霰石、方解石在不同钙硅比时所占比例不同,钙硅比≤0.67时文石占较大比例,钙硅比≥1.00时方解石为主要碳化产物,钙硅比=0.83时球霰石含量最大;加速碳化条件下形成的碳酸钙分解温度分成两部分,在400~620℃范围内文石和球霰石都分解,方解石在650~800℃范围内分解。  相似文献   

15.
Calcium silicate hydrates, CaO–SiO2-H2O (C-S-H), were studied as a chloride fixation material. C-S-H of two different CaO/SiO2 ratios were synthesized and burned with calcium chloride in a temperature range from 600° to 1000°C. Minerals with a chemical composition of CaO·SiO2·CaCl2 and 9CaO·6SiO2·CaCl2 were identified by X-ray diffraction analysis. Comparing the diffraction intensity, it was found that the most efficient chloride fixation was attained when burned at 800°C. Changes in the morphology of silicate anion associated with burning and fixation of the chloride were studied in terms of chloride fixation capability using the trimethylsililation technique. It was confirmed that some silicate anions formed a glassy infinite chain where the chloride ions were fixed as a solid solution.  相似文献   

16.
The structure of calcium silicate hydrate (C‐S‐H) gels was modified by hydrothermal reaction with aqueous acetic acid solvent, and then the C‐S‐H gels were used for dye removal from aqueous solution. With increasing acetic acid concentration, the Ca:Si molar ratio decreased and the length of the silicate anion chain structure of the C‐S‐H gels increased. The silicate anion chain length affects the number of available silanol groups on the surface of the C‐S‐H gel: the longer the silicate anion chain length, the greater the number of negative charges and the higher the surface potential. C‐S‐H gels with a long silicate anion structure exhibited higher adsorption capacity for methylene blue than gels with a short silicate anion structure. The enhanced adsorption capacity of the C‐S‐H gels is related to the higher number of silanol groups in the bridging silica tetrahedra of the intermediate anion chain structure compared with those in the end units of silica tetrahedra.  相似文献   

17.
Solubility in the fully hydrated CaO–SiO2–H2O system can be best described using two ideal C-S-H-(I) and C-S-H-(II) binary solid solution phases. The most recent structural ideas about the C-S-H gel permit one to write stoichiometries of polymerized C-S-H-(II) end-members as hydrated precursors of the stable tobermorite and jennite minerals in the form of 5Ca(OH)2·6SiO2·5H2O and 10Ca(OH)2·6SiO2·6H2O, respectively. For thermodynamic modeling purposes, it is more convenient to express the number of basic silica and portlandite units in these stoichiometries using the coefficients n Si and n Ca. Thermodynamic solid-solution aqueous-solution equilibrium modeling by applying the Gibbs energy minimization (GEM) approach shows the best generic fits to the available experimental solubility data at solid 0.8 < Ca/Si < 2.0 if both stoichiometry and thermodynamic constants of the end-members are normalized to n Si= 1.0 ± 0.3. Recommended stoichiometries and thermodynamic data for the C-S-H end-members provide a reliable basis for the subsequent multicomponent extension of the ideal C-S-H solid solution model by incorporation of end-members for the (radio)toxic elements or trace metals.  相似文献   

18.
徐晓飞  汤盛文  何真 《硅酸盐通报》2021,40(12):3903-3909
水化硅酸钙(C-S-H)作为硅酸盐水泥基材料的主要结合相,对水泥基材料的耐久性、物理力学性能有显著影响。本文构建了钙硅摩尔比(Ca/Si)从1.1到1.9的5个C-S-H模型,并通过分子动力学模拟了C-S-H 模型沿xyz方向的纳米压痕测试,然后采用典型的Oliver-Pharr方法分别计算它们的压痕模量和硬度。模拟结果表明:随着钙硅摩尔比的增加,C-S-H的密度会逐渐降低,水硅摩尔比会逐渐增加,平均硅链长会有所降低;C-S-H的力学性能受钙硅摩尔比的影响很大,随着钙硅摩尔比的增加,硅链缺陷程度增加,钙硅片层状结构的稳定性会相应降低,C-S-H结构抵抗外界变形荷载的能力减弱,从而导致压痕模量和硬度降低。平行于钙硅层方向的压痕模量和硬度值比较接近,而垂直于钙硅层方向的值略低,C-S-H近似于横观各向同性结构。随着钙硅摩尔比的增加,三个方向的值逐渐接近,C-S-H具有从横观各向同性变为各向同性的趋势。  相似文献   

19.
水化硅酸钙(C-S-H)是水泥水化产物中最重要的组成成分,是水泥基材料的主要胶凝相。C-S-H层间水对其纳米结构和力学性能会产生显著影响。利用分子动力学研究了不同湿度C-S-H在结构和力学性能方面的差异。通过原子径向分布函数和浓度分布、弹性常数以及应力应变关系分析了湿度对C-S-H结构和弹性性质以及拉伸、压缩、剪切力学性能和变形性能的影响。结果表明:湿度增加会导致C-S-H中Si、Ca原子近程范围内的O原子集聚增多,还会导致C-S-H层间距离增大,分层更加明显,同时会降低C-S-H的弹性性质;湿度的增加会降低C-S-H拉伸、压缩、剪切力学性能和变形性能;湿度对抗拉与抗剪强度影响较大,对抗压强度影响较小,对拉伸时的变形性能影响最大,对压缩时的变形性能影响最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号