首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
在干摩擦条件下,对SiC颗粒含量20%的铝基复合材料在2~20 MPa载荷和200 r/min、400 r/min的滑动摩擦速度下进行摩擦系数及磨损率变化分析,并结合对磨损表面的SEM和EDS分析,探讨了SiC颗粒增强铝基复合材料的性能,并建立了在不同载荷和速度下的摩擦磨损机理图.研究表明,当载荷和摩擦速度都相对较低时,磨损表面主要为轻微的磨粒磨损,并伴随氧化磨损.当载荷达到10 MPa时,会发生轻微磨损向严重磨损转变,逐渐出现剥层磨损.最后在载荷为20 MPa、摩擦速度为400 r/min时,材料表面产生严重的粘着磨损.  相似文献   

2.
The tribological properties of carbon fiber reinforced polyimide (PI) composites with different MoS2 containing sliding against GCr15 steel were comparatively evaluated on an M-2000 model ring-on-block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. It was found that small incorporation of MoS2 was harmful to the improvement of friction and wear behaviors of carbon fiber reinforced PI composites. However, it was found that the increasing filler of MoS2 significantly improved the wear resistance and decreased the friction coefficient of carbon fiber reinforced PI composites. It was also found that the tribological properties of MoS2 and short carbon fiber reinforced PI composites were closely related with the sliding condition such as sliding rate and applied load.  相似文献   

3.
稀土处理玻璃纤维填充PTFE复合材料的滑动磨损性能   总被引:5,自引:0,他引:5       下载免费PDF全文
研究了不同玻璃纤维表面处理对PTFE复合材料在干摩擦条件下滑动磨损性能的影响,并借助扫描电子显微镜(SEM)分析了磨损机理。结果表明:在干摩擦条件下,经表面处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度比未经处理玻璃纤维填充的PTFE复合材料的低,且减磨性能优于未经处理的;而稀土处理玻璃纤维填充的PTFE复合材料的摩擦系数和摩擦表面温度最低,减磨性能最好;未经处理玻璃纤维填充的PTFE复合材料和偶联剂处理玻璃纤维填充的PTFE复合材料都发生了剧烈的粘着转移;偶联剂与稀土处理玻璃纤维填充的PTFE复合材料的磨损机理主要是明显的磨粒磨损;稀土处理玻璃纤维填充PTFE复合材料的磨损形式主要是粘着转移和轻微的磨粒磨损。  相似文献   

4.
利用MM-200型摩擦磨损试验机,对不同体积含量MoS2填充聚酰亚胺(PI)复合材料在干摩擦条件下与GCr15轴承钢对摩时的摩擦磨损性能进行了研究,并利用扫描电子显微镜对PI复合材料及其偶件的磨损表面进行了分析。研究发现,添加MoS2可有效降低PI复合材料的摩擦系数,且PI复合材料的摩擦系数随MoS2含量的增大而减小。除PI+10%MoS2外,其它含量MoS2填充PI复合材料的耐磨性能均明显优于纯PI材料,但当MoS2的含量超过30%后,PI复合材料的磨损率基本不随MoS2含量变化。在较高的载荷条件下,MoS2填充PI复合材料均呈现出良好的减摩耐磨性能。  相似文献   

5.
In this study,the effects of various surface treatments on the friction and wear behavior of AISI 4140 steel have been evaluated.Sample surfaces of AISI 4140 steel were treated by quenching,carburizing,boronizing and plasma transferred arc (PTA) modification.The microstructural characteristics of surface treated steel samples were examined by optical microscopy and scanning electron microscopy (SEM).The mechanical properties of the samples including the surface roughness,microhardness,and abrasive and adhesive wear characteristics were also evaluated.Wear tests were applied by using a block-on-disc configuration under dry sliding conditions.The wear behavior and friction characteristics of the samples were determined as a function of sliding distance.Each sample group was compared with the other sample groups,and it was observed that the carburized samples demonstrated the lowest weight losses;however,PTA-treated samples demonstrated the lowest coefficient of friction in comparison to the other sample groups at the same sliding distance.  相似文献   

6.
The fretting wear behaviors of hoisting rope wires in acid medium were investigated in this paper. Fretting wear tests of steel wires were conducted on a self-made fretting wear rig, and their fretting running characteristics, coefficient of friction, dissipated energy and wear morphology were analyzed. The results show that the relative sliding between steel wires can be promoted in the acid medium. As the contact load increases, the fretting of steel wires changes from a slip regime to a mixed one, and the coefficient of friction decreases significantly. Moreover, the coefficient of friction changes from about 1.2 in the dry friction environment to about 0.5 in the acid medium. Energy loss presents the same variation trend. Wear scar depth is larger in the acid medium than in the dry friction environment. The primary wear mechanism in the dry friction environment is peeling as compared to peeling, particle attrition and corrosion in the acid medium.  相似文献   

7.
The friction and wear behavior of high performance polyimide (PI) and its composites reinforced with short cut fibers such as carbon fiber, glass fiber and quartz fiber was comparatively evaluated under dry sliding and water-lubricated condition, aiming at selecting matching materials for the pumps of pure water power transmission. The wear mechanisms of the composites under the two different sliding conditions were also comparatively discussed, based on scanning electron microscopic examination of the worn composite and steel counterpart surfaces. As the results, the PI composites reinforced with carbon fiber have the best mechanical and tribological properties compared with glass fiber and quartz fiber. PI composites sliding against stainless steel register lower friction coefficients and wear rates under water-lubricated condition than under dry sliding though the transfer of PI and its composites was considerably hindered in this case. PI and its composites are characterized by plastic deformation, micro cracking, and spalling under both dry-and water-lubricated sliding. Such plastic deformation, micro cracking, and spalling is significantly abated under water-lubricated condition. The glass and quart2 fibers were easily abraded and broken when sliding against steel in water environment, the broken fibers transferred to the mating metal surface and increase the surface roughness of mating stainless steel. This is probably the cause of the increased wear rate of glass fiber and quartz fiber PI composites in this case.  相似文献   

8.
In efforts to investigate the influence of the surface texturing on the Si3N4/TiC ceramic, laser surface texturing (LST) was performed on the Si3N4/TiC ceramic by an Nd:YAG laser and different geometrical characteristics of regular-arranged micro-grooved textures were fabricated on the surfaces. The tribological properties of the textured and smooth samples were investigated by carrying out sliding wear tests against steel balls under dry condition using a ball-on-disk tribometer. Effect of surface texturing on the stress distribution was studied by finite element method (FEM). Results show that the textured surfaces exhibited lower friction coefficient and excellent anti-wear properties compared with smooth surfaces. The tribological characteristics depended greatly on the size and density of the micro-grooves, and the geometrical characteristics of the surface textures have a significant effect on the tribological behavior. Among the patterns investigated, the wavy-grooved samples exhibit the lowest friction coefficient and wear rate; and a large texture density may be the best for reduction of friction and wear of textured samples. While, the wear rate of balls sliding against textured surfaces is larger than that of balls sliding against smooth surfaces. FEM results show that surface texturing can improve the stress distribution of contact interfaces and reduce stress concentration.  相似文献   

9.
Dry sliding friction between the Al_59Cu_25.5Fe_12.5B_3 quasicrystals (QCs)/coating of the diamond-like carbon (DLC) was carried out by self-made tribometer under different conditions. The influences of four parameters (temperature, sliding velocity, applied load, atmosphere) on friction and wear of quasicrystal surface were studied. Microstructure of quasicrystal, morphology of worn surface, and wear debris were observed by scanning electron microscopy (SEM). The results showed that for QCs, the friction coefficient and roughness of worn surface were influenced by the parameters, especially greatly by the temperature. With rise of the applied load and sliding velocity, the friction coefficient decreased. The dominant wear mechanism at 350℃ was delamination for QCs. The cracks formed on the worn surface during the friction. Moreover, phase transformation was not observed on worn surface of QCs at 350℃. All the results are discussed and explained.  相似文献   

10.
The present study was an attempt to examine the effects of carbon and cellulose fibers on the tribological characteristics of rubber-based friction materials (RBFMs). A fiber free RBFM as a reference material and a series of fiber included RBFMs at different volume fractions were prepared by two-roll mill. The friction tests were performed at different sliding velocities and various drum temperatures. The mechanical properties and surface microstructure of friction specimens were also examined. It was revealed that the carbon fiber influences slightly the coefficient of friction (COF) of RBFM but it improves the wear resistance and the fade behavior considerably. It reduces the drum temperature as well. Cellulose fiber though offered high COF but it proved to be destructive from the fade behavior and wear rate point of view due to its weak thermal stability. It was found that the rubber-to-glass transition, which occurred at high sliding velocities, influences the COF, wear rate, and fade behavior of the RBFMs significantly for both fiber free and fiber-containing systems.  相似文献   

11.
采用液相剥离法制备多层石墨烯(MLG)及MLG/Fe_(2)O_(3)复合纳米材料,将MLG,MLG/Fe_(2)O_(3)及MLG+Fe_(2)O_(3)直接添加至钛合金与钢的滑动界面上,通过干滑动摩擦磨损实验测试TC11合金的摩擦磨损行为。采用X射线衍射仪、激光拉曼光谱仪、扫描电子显微镜、3D激光扫描显微镜及能谱仪对磨损表面及亚表面的结构、形貌、成分进行分析。结果表明:只添加MLG时,TC11合金磨损失重及摩擦因数的变化趋势与未添加时类似,但磨损更严重。磨面上只含金属Ti,呈现出黏着痕迹、塑性撕裂、犁沟等黏着、磨粒磨损特征,基体发生塑性变形。添加MLG/Fe_(2)O_(3)复合和MLG+Fe_(2)O_(3)机械混合纳米材料时,磨损失重及摩擦因数在一定滑动转数范围内始终保持极低值,处于0附近。磨面上留有MLG和Fe_(2)O_(3)等物相,摩擦层为双层结构,呈现出典型的黑色、灰色区域。转数增至25000转时,添加复合材料时形成的双层摩擦层消失,转变为严重磨损,而添加混合材料时形成的双层摩擦层仍稳定存在。单独的MLG不能改善钛合金的摩擦磨损性能,在含Fe_(2)O_(3)摩擦层基础上添加MLG,形成的双层摩擦层兼具润滑和承载功能,可显著提高钛合金的减摩性和抗磨性。机械混合添加剂诱导形成的双层摩擦层中,因MLG层多且相对含量较高,钛合金表现出更为优异的摩擦学性能。  相似文献   

12.
The effect of ozone surface treatment of carbon fibers (CF) on the tensile strength and tribological properties of carbon fiber reinforced polyimide (CF/PI) composite was investigated. Experimental results revealed that the tensile strength of ozone and air oxidation treated CF reinforced PI composite was improved compared with that of untreated composite. Compared with the untreated and air‐oxidated CF/PI composite, the ozone treated composite had the lowest friction coefficient and specific wear rate under given applied load and reciprocating sliding frequency. Ozone treatment effectively improved the interfacial adhesion between CF and PI. The strong interfacial adhesion of the composite made CF not easy to detach from the PI matrix, and prevented the rubbing‐off of PI, accordingly improved the friction and wear properties of the composite.  相似文献   

13.
采用块 盘式摩擦磨损试验方法,在MG 200摩擦磨损试验机上对Si3N4陶瓷 白口铸铁摩擦副进行了微量润滑条件下的摩擦磨损试验,同时根据试件的SME照片和能谱成分分析了摩擦磨损机理,为陶瓷材料的制备及减少磨损提供理论依据。试验和分析结果表明:微量润滑条件下Si3N4陶瓷的磨损率和摩擦系数要比干摩擦条件下小得多;Si3N4陶瓷的磨损率随载荷的增大而增大,滑动速度对磨损率的影响要小于载荷对其的影响;Si3N4陶瓷 白口铸铁的摩擦系数随速度的增大而减小,载荷的变化对摩擦系数的影响不大;Si3N4陶瓷的磨损是化学磨损、机体物质脱落和磨粒磨损共同作用的结果,其中化学磨损起主导作用。  相似文献   

14.
利用树脂传递模塑(RTM)工艺制备了三维编织炭纤维/环氧(C3D/EP)复合材料.采用MM-200型摩擦磨损试验机研究了该材料润滑条件下的摩擦磨损性能,探讨了载荷及滑动速度等外界因素的影响;并采用XL30 ESEM电子显微镜观察磨损表面形貌,分析了其磨损机理.结果表明,润滑条件下复合材料的摩擦磨损性能远优于干摩擦,且磨合期较短;随着载荷的增加,复合材料的摩擦系数和比磨损率降低,但滑动速度对摩擦磨损性能的影响很小;润滑条件下的磨损机理主要是磨粒磨损.  相似文献   

15.
氧化铝陶瓷的高温磨损与自润滑机理研究   总被引:7,自引:0,他引:7  
研究了Al203陶瓷从室温至12000℃在于摩擦条件下的高温摩擦磨损行为。结果表明:在600℃以后的摩擦磨损随温度上升而逐渐减小,在1200℃的摩擦系数仅为室温的60%磨损则降低了两个数量级,表现出良好的高温自润滑特征。在不同温度下,存在三种显著不同的磨损机理.从室温至600℃,主要是磨粒磨损和微断裂,磨损随温度上升而略有增加.在600~1000℃,磨损机理逐渐由脆性断裂过渡到塑性变形和再结晶,在表面形成一个厚度为5~10μm的、类似于纳米材料结构的特殊表面层.随着这种特殊表面层的形成,磨损显著下降.在1200℃,摩擦表面由塑性变形发展到软化状态,出现流体动力润滑,使摩擦磨损进一步降低.  相似文献   

16.
双盘直槽(double-disc and linear-groove, DDLG)研磨方法是以1个平端面研磨盘和1个具有多条直沟槽的研磨盘为对磨研具,对圆柱滚子的滚动面进行精密加工的新方法。在加工过程中,圆柱滚子沿直沟槽连续供料,在2个研磨盘的摩擦力矩驱动下连续自转。研磨盘材料的选择是搭建双盘直槽研磨设备的基础。为了确定适用于双盘直槽研磨方法的研磨盘材料组合,基于摩擦磨损实验展开相关研究。首先,基于摩擦原理,分析了圆柱滚子的运动状态和研磨盘材料的摩擦特性对研磨效果的影响,并确定了研磨盘材料摩擦系数的筛选条件。然后,通过销-盘摩擦磨损实验测试了铸铁、45钢、黄铜、聚四氟乙烯(polytetrafluoroethylene, PTFE)、有机玻璃(polymethyl methacrylate, PMMA)、125%铸铁基固结磨料和125%树脂基固结磨料等多种备选材料在研磨条件下的摩擦系数、耐磨性和排屑性能。最后,搭建了双盘直槽研磨试验台,通过观察圆柱滚子的自转情况来验证基于摩擦磨损实验的研具选材方法的合理性。通过摩擦磨损实验测得,铸铁和45钢的滑动摩擦系数大,磨削效率高,但耐磨性差,适合用作大去除量场合的上研磨盘材料;有机玻璃的滑动摩擦系数大,耐磨性好,磨削效率高,适合用作小去除量场合的上研磨盘材料;聚四氟乙烯的滑动摩擦系数小,耐磨性好,可用作下研磨盘直沟槽材料;固结磨料的滑动摩擦系数变化大且易堵塞,不适合用作研磨盘材料。研究结果可为双盘直槽研磨设备的设计提供可行的研具选材依据。  相似文献   

17.
利用挤压铸造法制备了Al2O3f+Cf/ZL109短纤维混杂增强金属基复合材料,并利用统计学方法对比研究了在滑动速度为0.837 m/s、压力为196 N的条件下热处理对该混杂复合材料干摩擦磨损性能的影响。研究结果表明:铸态和热处理态复合材料的磨损率和摩擦系数均服从正态分布,铸态复合材料的磨损率和摩擦系数均值都大于热处理态复合材料,热处理有利于复合材料摩擦磨损性能的提高。铸态复合材料的磨损机制主要为犁沟磨损和层离,热处理后复合材料抗层离的能力增强,磨损机制主要为轻微的犁沟磨损。  相似文献   

18.
通过模压成型制备了碳纤维与空心微珠共混改性的聚酰亚胺复合材料, 采用MRH-3型摩擦磨损试验机研究了空心微珠含量、滑动速度及载荷对复合材料摩擦学性能的影响, 并对其磨损形貌及机制进行了分析。结果表明: 空心微珠-碳纤维/聚酰亚胺复合材料摩擦学性能优于其单独填充的聚酰亚胺基复合材料; 空心微珠含量对共混改性的复合材料摩擦系数影响不大, 但其磨损率随着空心微珠含量的增加先减小后增大; 15%空心微珠-10%碳纤维(质量分数)共混增强的复合材料的减摩耐磨性能最佳; 随着滑动速度提高, 空心微珠-碳纤维/聚酰亚胺复合材料的摩擦系数下降, 磨损率增大; 空心微珠-碳纤维/聚酰亚胺复合材料摩擦系数随着载荷增加先下降后上升, 而磨损率则随着载荷增加而增大; 空心微珠-碳纤维/聚酰亚胺的主要磨损机制在较低载荷时为磨粒磨损, 在较高载荷时为粘着磨损和磨粒磨损。  相似文献   

19.
The friction, wear and acoustic emission behaviour of various combinations of alumina, silicon nitride, and SAE52100 steel, operating under dry sliding conditions, was investigated. A designed ball-on-flat-disc type of tribometer was used to conduct these experiments. This apparatus, equipped with a force sensor, using silicon strain gauges, measured simultaneously the normal load and friction force. Both forces were used to determine the real-time value of the dynamic coefficient of friction. The AE signal arising from the interaction of the surfaces in dynamic contact was also detected and a data acquisition system was used to gather this signal as well as the outputs from the force sensor, at high frequency. The effects of test duration, sliding speed and normal load on the above mentioned tribological parameters were evaluated. The interest of this study further extended to assess the correlations that may exist between the integrated rms acoustic signal (AE) and the friction mechanisms, wear volume, friction work as well as the material removal power. Under the specific conditions of the present experiments, no consistent relation was found between the variations of AE and corresponding dynamic coefficient of friction (COF) as function of time. The variation of COF and wear rate, obtained considering a fixed total sliding distance of 500 m, as function of a range of sliding speed (0.05–2.5 m/s) and normal load (5–40 N) are presented. It was found that the test duration has an important impact on wear results of the experiments conducted at different sliding speeds and fixed travelling distance. More expected behaviour was observed when the relationships between the AE and wear volume, friction work, and material removal power were investigated considering the data obtained at different loadings and fixed sliding speed. Some models representing interesting relationships which could be used for predicting tribological properties in the case of practical applications, similar to the tribo-systems investigated in this study, are proposed.  相似文献   

20.
The effects of several carbon series additions including graphite (Gr), carbon fiber (CF) and carbon nanotube (CNT) on the microstructures and tribological behaviors of polyimide-based (PI-based) composites under sea water lubrication were investigated systematically. Results showed that the incorporation of any filler improved the wear resistance of polyimide (PI) under sea water lubrication, but did not decrease the friction coefficient. Especially the combined incorporation of 10%Gr, 10%CF and 5%CNT (in volume) was the most effective in improving the anti-wear properties of PI. This suggested that there existed a synergetic effect among the three carbon series additions on improving the wear resistance of PI. During the friction and wear process, the carbon additions played different roles in improving the wear resistance of PI-based composites. CF with high compressive strength can carry the main load applied on the sliding surfaces to inhibit the wear of PI matrix. CNT can decrease the stress concentration around CF and further protect CF from being broken. Gr in the form of much thinner layer can not only improve the loading capacity, but also play the same role of CNT to avoid CF carrying too much load. More importantly, Gr, CF and CNT worked synergistically to condense the microstructure of PI-based composite and ameliorate the interfacial combination between all fillers and PI matrix, which well explained why the PI–10%Gr–10%CF–5%CNT composite had excellent tribological properties, even under heavy load or high sliding speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号