首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
设计平行模压变形、180°交叉模压变形、90°交叉模压变形对1060纯铝进行系列限制模压变形(CGP)试验,采用透射电镜研究该材料在不同变形工艺下的组织演化规律和晶粒细化速率.结果表明:变形工艺不影响组织的演化规律,但显著影响晶粒细化速率、晶粒细化效果以及大角度晶界的形成;90°交叉模压变形最优.在相同的变形温度、变形速率和应变累积条件下,所能达到的晶粒细化速率和大角度晶界的数量取决于剪切变形模式.  相似文献   

2.
为了改善传统大塑性变形技术在实际操作中尺寸参数的局限性,提高AZ31镁合金的晶粒细化效果,提升其综合力学性能,将AZ31镁合金板材分别通过DEFORM-3D有限元数值模拟和300℃条件下4道次锻压-弯曲反复变形工艺实验来研究其变形行为和微观组织。模拟结果表明:变形道次越多,等效应变值越大,1道次变形时,等效应变呈间隔分布,而经过4道次变形后,高应变区域向低应变区域扩散,等效应变分布趋于均匀化;同时,变形过程中存在剪切力,弯曲剪切作用与锻压作用相互耦合,对细化晶粒、开启非基面滑移具有促进作用,有助于改善AZ31镁合金的组织与力学性能。实验结果表明:变形道次越多,晶粒细化效果越好,平均晶粒尺寸可显著细化至7.1μm,同时,组织均匀性不断改善。4道次变形后板材在不同区域处的织构取向分布差异较小,硬度值分布也相对均匀,平均硬度值为62.8 HV。  相似文献   

3.
借助拉伸试验、维氏显微硬度测试、TEM与EBSD等表征手段,研究了限制模压变形道次与变形后退火对纯铝板材微观组织与力学性能的影响规律。经过多道次的限制模压变形,材料晶粒尺寸由初始退火态的约30μm细化至亚微米级,强度、硬度显著提高。在回复阶段变形材料出现退火强化现象,且在300℃退火时仍保持良好的热稳定性。超细晶材料的退火强化现象主要由晶界位错源抑制强化引起,并与退火温度和应变累积量密切相关。材料晶粒组织在变形及退火过程中主要以小角度晶界为主,且应变累积的不均匀性始终存在。变形后期表面微裂纹的出现对材料的力学性能造成不良影响。2道次模压变形板材在300℃下退火1 h后的综合性能最优。  相似文献   

4.
结合传统挤压与扭转变形的特点提出正挤压-扭转复合变形方式,采用有限元软件对其变形方式进行数值模拟。研究扭转角度对坯料变形过程中累积应变的影响,并对经过不同扭转角度变形后坯料的等效应变分布的不均匀程度进行定量分析。根据正挤压-扭转复合变形的模拟结果,设计出较优的模具结构并进行实验研究。结果表明:正挤压-扭转复合变形可以显著提高镁合金变形过程的累积应变,随着扭转角度的增大,累积应变增大,但不均匀程度相对增加,最大等效应变高达3.75。当模具扭转角为40°时,试样可获得较大的等效应变和均匀的等效应变分布。在复合变形后,AZ31镁合金的晶粒尺寸由300μm显著细化至约6μm。  相似文献   

5.
对AZ31镁合金热轧板在350℃进行了累积叠轧焊(ARB)变形,采用EBSD技术研究了AZ31镁合金的微观组织和织构演变.结果表明,ARB可以显著细化AZ31镁合金的晶粒组织,经过3道次变形后平均晶粒尺寸为2.18μm,后续的ARB变形使AZ31镁合金的微观组织更均匀,但晶粒不会再显著细化,说明存在临界ARB变形道次,使晶粒细化和晶粒长大之间达到动态平衡.AZ31镁合金在ARB变形过程中的晶粒细化机制为连续动态再结晶,尤其还观察到了旋转动态再结晶.动态再结晶的形变储存能来源于多道次累积的剧烈应变和沿厚度方向分布复杂的剪切变形.ARB变形过程中旋转动态再结晶和剪切变形使新晶粒c轴发生旋转,导致基面织构弱化.  相似文献   

6.
采用交叉模压形变法对纯铜进行不同道次的形变处理,研究交叉模压形变对纯铜显微组织和力学性能的影响。研究结果表明:交叉模压形变可以较有效细化纯铜晶粒尺寸,交叉模压10道次后,平均晶粒尺寸减小63%;材料在塑性变形初期(2道次)细化效果最明显,经相同道次交叉模压形变后,晶粒细化效果逐渐减低;交叉模压变形后纯铜试样的显微硬度和抗拉强度均得到显著提高,但是伸长率下降,硬度值和抗拉强度分别提高了96.4%和31.9%,伸长率由66.67%下降至12.25%。  相似文献   

7.
研究了累积叠轧焊温度变化和循环道次对AZ31镁合金板材组织和性能的影响,分析了累积叠轧焊工艺细化AZ31镁合金晶粒的机理.试验结果表明,加热温度从250℃增加到400℃时,第一个道次后的平均晶粒尺寸逐渐减小;在400℃保温5min、道次压下量为50%时,第二个道次的板材平均晶粒尺寸可以细化到1.3μm,抗拉强度为300MPa,伸长率达到25.2%.  相似文献   

8.
在温度为285~380°C的条件下,采用循环镦-挤工艺成功获得AZ61镁合金的累积大塑性变形,并对铸态和循环镦-挤变形后合金的组织特征和力学性能进行研究。结果表明,在285°C的条件下,循环镦-挤变形3道次后,材料获得的累积应变为4.28,并得到了平均晶粒尺寸为3.5μm的细小均匀的微观组织。晶粒细化的主要原因是局部应变引起的动态再结晶。结果还表明,显微组织演变受温度和累积变形程度的影响。晶粒细化使循环镦-挤变形的AZ61镁合金的力学性能得到明显的改善。此外,通过室温拉伸试验揭示了循环镦-挤工艺参数与力学性能之间的关系。  相似文献   

9.
采用ABAQUS软件对Cu-38Zn合金不同尺寸的试样平行模压和交叉模压两种形变过程进行有限元模拟,观察模压形变后试样的显微组织,研究Cu-38Zn合金经模压形变后的微观组织与等效应变的关系。结果表明:经模压形变后Cu-38Zn合金的晶粒细化不但与模压形变时积累的等效应变有关,而且与模压形变时变形场的复杂性和试样的尺寸有关。Cu-38Zn合金的晶粒尺寸随着等效应变的增大而减小,但是在相同的等效应变下,复杂的变形场具有更有效的晶粒细化效果;较大尺寸的试样具有更多的孪晶组织。  相似文献   

10.
通过循环扩挤(CEEOP)变形方法对100 mm×50 mm×170 mm的AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度HB从均匀化退火态的615 MPa提升到了830.7 MPa,4道次达到862.7 MPa,抗拉强度与屈服强度分别从均匀化退火态的230.9和115 MPa提升到了262.7和155 MPa,4道次可以达到294和170 MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

11.
模压变形中国低活化马氏体钢沉淀相对其力学性能的影响   总被引:1,自引:0,他引:1  
采用室温拉伸、500℃高温拉伸、显微硬度、SEM、TEM等方法研究中国低活化马氏体钢(CLAM钢)多道次模压变形诱导沉淀相回溶和析出对力学性能的影响.结果表明,三道次模压变形后,有效细化了晶粒和沉淀相,尺寸为5 μm以上的晶粒所占体积分数减小为0.49%,M23C6相和MX相平均尺寸分别从107.32和17.12 nm减小到93.97和13.59 nm.累积应变为2.32时,抗拉强度和硬度分别为720 MPa和2.46 GPa,较变形前分别增加了 22.87%和12.33%;当累积应变达到3.48时,与累积应变为2.32时相比其强度降低了 4.31%,硬度和延伸率分别上升了 2.03%和6.27%,该变化与变形过程中发生明显的沉淀相回溶有关.  相似文献   

12.
利用双向挤压与螺旋变形的特性,本研究提出镁合金双向挤压-螺旋复合变形的新方法。采用DEFORM-3D软件模拟分析螺旋角度和凹槽半径对坯料变形过程中累积应变的影响,得出合适的结构参数并加工制造出模具进行实验研究。研究结果表明:双向挤压-螺旋复合变形可极大地提高镁合金变形过程的等效应变,随着螺旋角度和凹槽半径的增大,等效应变值也相应的增大,但不均匀程度有所变大。模具螺旋角为40°和凹槽半径为0.8 mm时,试样可获得良好的等效应变值和均匀的等效应变分布,晶粒组织显著细化。  相似文献   

13.
通过循环扩挤(CEEOP)变形方法对100mm×50mm×170mm的 AZ80镁合金块状材料进行挤压加工,借助计算机模拟仿真、组织观察、拉伸试验、硬度测试等手段研究了1~4道次CEEOP变形对AZ80镁合金等效应变、显微组织和力学性能的影响。结果表明:随着CEEOP挤压道次的增加,晶粒的尺寸越来越小且分布均匀,1道次后晶粒尺寸可以从200μm左右细化到6μm,4道次后晶粒尺寸细化到1.5μm左右,整体分布均匀呈等轴晶晶粒,晶粒细化的机制是晶粒的机械破碎和动态再结晶,2道次以后晶粒细化效果不太明显。力学性能较均匀化退火态有了大幅度的提升,1道次硬度从均匀化退火态的61.5HB提升到了83.07HB,4道次达到86.27HB,抗拉强度与屈服强度分别从均匀化退火态的230.9MPa和115MPa提升到了262.7MPa和155MPa,四道次可以达到294MPa和170MPa,通过对比ECAP变形试样的组织与力学性能数据,在相同的变形温度与累积应变下,CEEOP变形方法比ECAP变形能够更好地细化晶粒和提高材料的抗拉强度和屈服强度。  相似文献   

14.
为了改善镁合金的组织和性能,提出一种新型的反复镦挤变形方法,设计了一套集剪切变形和反复镦挤变形于一体的多道次挤压模具。利用DEFORM-3D软件、金相显微镜和维氏硬度计分析了镁合金在反复镦挤变形中的应变、流速和应力的变化,并研究了微观组织均匀性以及硬度分布。结果表明,3道次镦挤变形后,等效应变不均匀指数变得很小,沿样品挤压方向(L1)和横向(L2)的等效不均匀指数最小分别为0.015和0.068,等效应变和等效应力分布均匀,晶粒尺寸从300μm细化到14.6μm,显微组织明显均匀细化,硬度在L1和L2上分别提高了27.1%和20.6%,且分布均匀。  相似文献   

15.
等通道转角挤压镁合金的微观组织和力学性能   总被引:3,自引:1,他引:2  
采用自制的90°模具,分析不同的ECAP挤压路径对AZ31镁合金变形后的微观组织和力学性能的影响;对挤压后的试样进行显微组织观察、硬度测试,研究等通道挤压工艺(ECAP)对AZ31镁合金的晶粒细化效果.结果表明:Bc路径晶粒细化效果较好,随着挤压道次增加,晶粒发生细化,7道次后晶粒尺寸由原来的70μm细化到4.8μm左右;硬度值随道次增加显著提高,3道次后达到最大值90.81MPa,之后随道次增加,硬度略有下降,趋于稳定.  相似文献   

16.
《铸造技术》2016,(10):2160-2164
采用有限元分析软件,对250℃下AZ31镁合金变通道角挤压进行数值模拟分析,研究宽厚比k对成型过程中的挤压载荷、等效应力、等效应变和应变均匀性的影响。结果表明:宽厚比k对AZ31镁合金挤压成型过程中的挤压载荷、等效应力、等效应变和应变均匀性影响明显。k由4增长至10时,挤压载荷由1.1×10~6N增至5.5×10~6 N。k小于8时,试样的应力等效最大值约为270 MPa;当k为8时,在转角剪切区应变高达2.3,心部和表层的应变差值小于0.5,剪切区累积了大量的应变且应变均匀性高,易诱发动态再结晶和晶粒碎裂,细化晶粒,增强AZ31镁合金的强韧性能。  相似文献   

17.
采用Deform-3D数值模拟软件对反复锻压模具结构和加工工艺进行有限元分析,发现:缩小模具型腔宽度能够增大试样每个锻压道次的等效应变,但应变分布均匀程度和试样形状尺寸保持度相应降低;模具存在一定的过渡角半径时,试样表面具有较好的成形质量,应变分布均匀性随着过渡角半径的增大有所提高;试样每道次锻压后绕Z轴旋转90°再进行下个道次锻压,等效应变分布比每道次锻压后试样不旋转更均匀;加工速度对锻压后试样的温升影响十分明显,速度越高温升越显著;随着锻压温度的提高,载荷峰值不断降低,试样中应变和应力分布逐渐均匀;随着摩擦系数的提高,等效应变分布均匀性有所改善,摩擦系数提高到0.2时分布最均匀,继续增大到0.3时分布均匀性开始显著降低。在300℃和0.1 mm·s-1条件下锻压AZ31镁合金的实验表明:5道次后晶粒显著细化,平均晶粒尺寸由约200μm细化到最小约1.3μm。  相似文献   

18.
采用累积叠轧焊(ARB)工艺制备超细晶组织AZ31镁合金薄板.实验结果表明,进行3道次ARB变形后,AZ31板材晶粒显著细化,平均晶粒尺寸约1.3μm,呈等轴状,材料组织均匀,没有发现孪晶.采用EBSD技术观察组织演变和晶粒的取向差.ARB变形过程中的晶粒细化可归因于累积应变诱导的晶粒细化、累积应变强化回复和再结晶以及ARB变形过程中复杂的界面和剪切应变分布.  相似文献   

19.
实验研究了多道次拉拔过程中拉拔速度、拉拔变形量对AZ31镁合金小直径薄壁管材组织和性能的影响。研究结果表明,温度为300℃、拉拔速度为0.30 mm·s-1时,管材壁厚减薄均匀,可以保证镁合金管材的拉拔顺利进行。多道次拉拔可以成功制备Φ4 mm×0.2 mm的AZ31镁合金小直径薄壁管材。且随着累计变形程度的增加,镁合金的晶粒显著细化,当累积变形量达到95.4%时,平均晶粒尺寸从开始的22μm减小到8μm左右。最终小直径薄壁镁合金管材的抗拉强度达到了247.3 MPa,相应的伸长率为16.8%。  相似文献   

20.
《铸造技术》2017,(2):402-404
为了研究ECAE转角对GCr15钢晶粒细化的影响,借助于solidworks软件建立内角90°、120°两种转角模具模型,利用DEFORM-3D软件进行分析。结果表明:当内角Φ准为90°相对于Φ准为120°时,等效应变更大,也就是随着内角增加等效应变减小,这对晶粒细化是不利的;模具内角为90°时晶粒细化效果比内角为120°要好,塑性变形也大,但是要注意摩擦阻力的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号