首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为探究Nomex蜂窝芯圆盘锯齿刀超声切削过程中切削参数与切削力热的映射关系,开展圆盘锯齿刀超声切削Nomex蜂窝芯复合材料仿真及试验研究,分析主轴转速、进给速度、切削宽度和切削深度对切削过程中切削力热的影响,建立了切削温度随进给速度、主轴转速的一次回归模型。结果表明:所建立仿真模型最大误差为11.2%,可有效预测切削力与切削温度;三向切削力随着切削宽度,切削深度,进给速度的增大而增大,随着主轴转速的增大而减小;进给速度与主轴转速对切削温度影响显著;实际加工中,应采用大切削深度与切削宽度增加切削效率,采用小进给速度和主轴转速以降低切削温度,减少刀具磨损。  相似文献   

2.
研究切削参数对PVD涂层刀具磨损面积的影响。利用正交试验进行切削试验,采用网格划分方法计算刀具磨损面积,分析刀具磨损面积与主轴转速、进给速度和切削深度之间的关系,根据试验结果得到:提高主轴转速能够降低刀具磨损面积,增加进给速度与切削深度将使刀具磨损面积增大。根据经验公式,利用最小二乘法建立刀具磨损面积预测模型,通过F检验可知模型具有较高的显著性,并得到切削参数中影响刀具磨损面积的主次关系为切削深度、主轴转速、进给速度。  相似文献   

3.
为了提高大理石加工表面质量,改进表面粗糙度,通过设计正交试验方案,进行CVD涂层刀具高速铣削天然大理石试验,检测加工表面粗糙度,分析天然大理石表面粗糙度随着单一切削参数的变化规律,并基于经验公式,以切削速度、切削深度及进给速度为影响因素建立加工大理石表面粗糙的预测模型。通过试验得到大理石表面粗糙度随着切削速度的增加而降低,随着进给速度和切削深度的增加而增加。结果表明:预测模型具有较高的显著性,为优化切削参数以改善加工大理石表面质量提供一定的参考;切削深度是影响加工大理石表面粗糙度的主要因素。  相似文献   

4.
目的通过研究GH4169高速铣削过程中切削工艺参数对加工残余应力的影响规律,改进工艺参数的选取,提高此类零件的疲劳寿命。方法设计了GH4169高速铣削工艺参数与加工残余应力之间的单因素试验。通过仅改变一个切削参数、其余切削参数不变的方式,得到了工件表面残余应力和切削深度方向残余应力与切削参数之间的变化规律。结果铣削进给方向(x方向)和垂直进给方向(y方向)的表面残余应力主要表现为拉应力,且随着铣削深度和每齿进给量的增加而增加,随着铣削速度的增加而减小;在切削深度方向上,不同切深值所在平面的x方向和y方向的残余应力主要表现为压应力,随着层深的增加先增大后减小。残余应力峰值随铣削深度和每齿进给量的增大而增大,随铣削速度的增大而减小,残余应力最大深度基本在80μm以内。结论 GH4169高速铣削加工中,如果要获得较小的表面残余拉应力,应该选用较小的铣削深度和每齿进给量,较大的铣削速度;在切深方向,如果要获得较大的残余压应力,应该选用较大的铣削深度和每齿进给量,较小的铣削速度。反之亦然。  相似文献   

5.
分析薄壁类零件铣削加工的工艺特点;针对薄壁构件周铣加工中的变形误差,采用正交试验法,在立式加工中心上进行铝合金6063周铣切削试验,研究进给速度、径向切削深度、轴向切削深度对加工误差的影响规律,为合理选用切削参数、减少加工变形、提高零件质量提供了可靠依据。  相似文献   

6.
本文对金刚石薄锯片高速锯切花岗石过程中的锯切力特性进行试验研究,在较宽的参数范围下,通过测量水平力、垂直力和主轴功率来计算切向力和法向力.对锯切力、力比、单颗金刚石承受的平均载荷进行了分析.结果显示,提高锯片的线速度使锯切力、力比和单颗金刚石磨粒承受平均载荷减小;在高速锯切时,锯切力随着锯切深度和进给速度的增加而增加,而进给速度对锯切力的明显影响要小于锯切深度,应选择小切深大进给的工艺参数组合;锯切力比随锯切深度的增加而增加,随进给速度的增加而减小;单颗金刚石磨粒承受平均载荷随着单颗粒金刚石最大未变形切削厚度的增大而线性增大.  相似文献   

7.
为了提高机床控制精度,设计一种可以精确预测面向切削力修正的主轴回转精度分析方法。为验证回转精度预测准确性,建立一套不需要通过标准球实现的主轴回转精度分析系统,可以针对具体切削工况开展主轴回转精度测试。研究结果表明:随着进给速率和切削深度改变,形成了具有规律性的同步误差,切深受到同步误差因素的影响程度最大,而进给速度次之。受切削载荷影响,主轴回转精度显著改变,同步误差和切削载荷具有正相关关系。在变进给及变切宽条件下,测试结果与仿真结果相近, 最大误差为0.2 μm。设定切宽12 mm与进给速度1 200 mm/min时,分离得到的圆度误差与100 r/min空转时圆度误差相比相吻合。  相似文献   

8.
《塑性工程学报》2016,(2):162-165
采用UG软件对成形塑料尼龙的高速钢车刀进行建模,并设计出特定形状的高速钢车刀。利用FANUC系统CK6140S数控车床对塑料尼龙材料进行塑性成形试验,观察塑料尼龙在特定成形参数条件下成形的运动效果及形态。利用CV3200轮廓度测量仪对成形的塑料尼龙表面进行轮廓度测量。分析通用型高速钢(W18Cr4V)车刀在不同的切削进给速度与切削深度下塑料尼龙工件的成形质量,得出最佳的切削进给速度为0.2mm·r-1、切削深度为5mm。结果表明,合理选择塑料成形刀具的材料、进给速度与切削深度,可使塑料尼龙成形呈规则完美的卷屑状,表面轮廓度与理论轮廓贴近吻合,实现塑料尼龙的高效率成形。  相似文献   

9.
通过硬质合金刀具车削氟金云母陶瓷实验,研究可加工陶瓷切削温度。以特征温度表征切削温度研究氟金云母可加工陶瓷车削加工中的切削温度。结果表明,特征温度随转速的变化幅度小;随着进给速度增大,特征温度整体上是下降的,并且进给速度在0.1~0.12 mm/r间,特征温度下降幅度较大;在特征温度随着切削深度增加而增加的过程中,存在一个下降阶段,而且下降阶段结束后,特征温度增长幅度变大。同一工艺参数下随切削次数的增加,测得的特征温度升高,其原因是:每次切削中,摩擦热主导温度变化,随切削次数的增加,刀具磨损量增大,特征温度升高。由于陶瓷低导热性和脆性,切削温度振颤不明显。  相似文献   

10.
通过PCD刀具切削天然大理石的试验研究,分析了在不同加工参数条件下对PCD刀具切削性能的影响以及刀具的磨损机理。试验结果表明:PCD刀具在加工过程中的磨损机理主要表现为磨粒的磨损、剥落,聚晶层的破损与结合剂破坏等;刀具主轴转速为12 000 r/min、进给速度为1 000 mm/min、切削深度为0.5 mm时,刀具的磨损量最小;且磨损量随刀具主轴转速的增加而降低,随刀具的进给速度和切削深度的增加而增加。  相似文献   

11.
谢英星 《机床与液压》2014,42(15):150-153
采用单因素试验法和正交试验法,在高速加工中心上对模具钢3Cr2NiMo进行切削试验,通过改变影响加工过程的切削参数:主轴转速、进给速度、轴向切削深度和径向切削深度,研究了影响工件加工表面粗糙度值程度的因素。结果表明:增大机床的主轴转速,粗糙度值显著降低,而增大进给速度、轴向铣削深度,粗糙度值增大,但增大的幅度不同,径向铣削深度的影响不明显。  相似文献   

12.
吴文悌  刘晓婷 《机床与液压》2008,36(1):57-58,61
分析了轮廓铣削中切削力变化机理,建立立铣刀的切削深度与加工轮廓形状之间的数学模型,探索数控铣削加工过程中通过调整进给速度来保证切削力相对稳定的方法,并通过实际使用验证这种方法的有效性.  相似文献   

13.
为了研究磨削工艺参数对SiC材料磨削质量的影响规律,利用DMG铣磨加工中心做了SiC陶瓷平面磨削工艺实验,分析研究了包括主轴转速、磨削深度、进给速度在内的磨削工艺参数对工件表面粗糙度的影响。结果表明:工件表面粗糙度随着主轴转速的增加而减小,随着磨削深度和进给速度的增加而增加。在粗糙度工艺试验的基础上,以表面粗糙度最小为目标优选一组磨削工艺参数,进行了小口径SiC陶瓷非球面磨削实验,获得了较低的表面粗糙度值(0.5150μm)和较小的面形精度误差(4.668μm)。  相似文献   

14.
闫海鹏  吴玉厚 《表面技术》2017,46(7):245-249
目的探索PCD刀具磨损机理,以延长刀具使用寿命。方法设计正交试验,研究不同加工参数切削大理石对刀具磨损的影响情况。分析主轴转速、进给速度与切削深度对PCD刀具磨损量的影响规律,以优化切削参数来减小刀具磨损量。根据经验公式,建立单位时间刀具磨损量和固定行程磨损量模型。通过对试验过程刀具振动情况记录,结合刀具实际磨损情况,给出了刀具磨损等级。结果主轴转速的提高可以减少刀具磨损量,进给速度的增大会加剧刀具磨损,而切削深度小于1 mm时,其对刀具磨损量的影响很小,但切削深度大于1 mm时,继续增大切削深度会使刀具快速磨损。利用预测模型能够很好地对刀具磨损情况进行预判,根据磨损等级,得出刀具与机床发生共振时磨损最为严重,在刀具表面产生了明显的犁沟、磨损以及金刚石颗粒脱落。结论在实际加工中,通过提高主轴转速、降低进给速度以及减小切削深度有助于增强刀具的耐用度,避开共振切削参数可以有效降低刀具磨损,主轴转速、进给速度、切削深度分别为12000r/min、500 mm/min、0.5 mm时的切削效果较佳,有最小的刀具磨损量。  相似文献   

15.
以覆膜砂砂坯为研究对象,进行了覆膜砂砂坯铣削加工实验,研究了主轴转速、进给速度、铣削深度、铣削宽度等工艺参数对砂型表面粗糙度Ra的影响,并采用正交实验和极差分析了各个因素对加工砂型表面品质的影响。结果表明,铣削工艺参数对加工后砂型表面品质有显著的影响。砂型表面粗糙度随着进给速度和铣削深度增加而增加,随着主轴转速的增加而减少,铣削宽度对其影响不明显;影响程度大小顺序为:铣削深度进给速度主轴转速铣削宽度,通过降低铣削深度和进给速度,提高主轴转速,可提高砂型加工表面品质。  相似文献   

16.
切削参数是影响PCD刀具切削性能的主要因素。本文采用Element Six公司的SYNDITE CTH025型聚晶金刚石(PCD)复合片制成强化复合地板用切削刀具,进行了一系列加工强化复合地板耐磨层的切削实验。通过实验研究了切削参数对刀具切削力的影响,得出了切削力随切削参数的变化规律,指出随着切削深度的增加,PCD刀具切削力增加;进给速度的增加使切削力增加;切削速度的增加将会使切削力降低。同时,分析了切削参数对刀具磨损、工件加工质量以及加工效率的影响。最后,本文总结了采用PCD刀具加工强化复合地板时加工参数的选择原则,认为当n=6000r/min、f=10000mm/min能够实现较高的加工效率,并保证工件的加工质量。  相似文献   

17.
采用单点金刚石飞刀加工可以直接加工出具有纳米级的表面粗糙度和亚微米级形状精度的光学微结构元件而不需要后续处理。通过超精密飞刀加工微V沟槽的实验,分析了主轴转速、进给速度、切削深度和切削行间距对微V沟槽加工精度的影响,并对切削参数进行优化。最后,利用优化后的切削参数加工出微V沟槽结构。实验结果显示,超精密飞刀加工微V沟槽可达到满足光学微结构加工精度的要求。  相似文献   

18.
通过自行设计的多孔与非等弧长节块组合金刚石锯片与普通锯片的对比分析,揭示组合结构金刚石锯片的切削特征.通过分析金刚石圆锯片在锯切过程中混凝土声发射信号和锯切力信号特征,得出切削速度、进给速度、切削深度对AErms峰值平均值和Z轴锯切力的影响.结论表明声发射信号的变化规律与锯切力信号的变化规律有较好的一致性.其它切削条件不变,随着切削速度的增加,声发射均方根值和切削力平均值都减小;随着进给速度、切削深度的增加,声发射均方根值和切削力平均值都增大.且自行设计的组合锯片整体性能优于普通锯片.  相似文献   

19.
本文通过钎焊金刚石磨具加工花岗岩时的正交切削试验,对切削速度、进给速度和切削深度及水平切削力Fh和垂直切削力Fv的影响,做了系统的分析研究。通过极差分析和趋势图得出磨削巴西黑花岗岩时的优化工艺参数。方差分析表明:进给速度和切削深度对切削力的影响要比切削速度显著。通过回归分析建立了切削力回归方程,经与试验数据比较,所建立的回归方程与试验数据拟合度近似。  相似文献   

20.
使用插铣法加工硬度为HRC50的P20淬硬钢,分析各种切削参数(切削速度、进给速度、切削步距、切削行距)对切削力的影响。研究结果表明:切削力基本不受切削速度的影响,随进给速度的增加而增大且呈线性增加的趋势,随切削步距和行距的增大而增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号