首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses a low‐complexity distributed containment control problem and its extension to fault‐tolerant control for networked nonlinear pure‐feedback systems under a directed graph. The multiple dynamic leaders are neighbors of only a subset of the followers described by completely non‐affine multi‐input multi‐output pure‐feedback dynamics. It is assumed that all followers' nonlinearities are heterogeneous and unknown. The proposed containment controller is implemented by using only error surfaces integrated by performance bounding functions and does not require any differential equations for compensating uncertainties and faults. Thus, compared with the previous containment control approaches for multi‐agent systems with unknown non‐affine nonlinearities, the distributed containment control structure is simplified. In addition, it is shown that the proposed control scheme can be applied to the fault‐tolerant containment control problem in the presence of unexpected system and actuator faults, without reconstructing any control structure. It is shown from Lyapunov stability theorem that all followers nearly converge to the dynamic convex hull spanned by the dynamic leaders and the containment control errors are preserved within certain given predefined bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper studies the containment control of a class of heterogeneous nonlinear multi-agent systems under general directed graph. Every follower agent is a nonlinear system in the output feedback form with the same relative degree. The authors’ goal is to design a distributed dynamic controller such that the outputs of followers enter the convex hull spanned by the outputs of leaders. To this end, the containment problem is converted into a cooperative output regulation problem, a distributed adaptive recursive procedure and the internal model are employed to design the distributed controller.  相似文献   

3.
This paper investigates the containment control problem of uncertain nonlinear strict‐feedback systems in the presence of actuator faults. The communication topology among the agents is directed, and there exists at least one leader that has a directed path to each follower. Based on fuzzy logic systems and the dynamic surface control technique, a fault‐tolerant containment control scheme is developed to guarantee that the outputs of all followers converge to the convex hull spanned by multiple dynamic leaders with bounded containment errors. The result is extended to a fault‐tolerant containment control with prescribed performance, such that the error surfaces are confined to predefined bounds regardless of actuator faults. Simulation results are provided to illustrate the effectiveness of the proposed methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, by incorporating the dynamic surface control technique into a neural network‐based adaptive control design framework, we have developed a backstepping‐based control design for a class of nonlinear systems in pure‐feedback form with arbitrary uncertainty. The circular design problem which may exist in pure‐feedback systems is overcome. In addition, our development is able to eliminate the problem of ‘explosion of complexity’ inherent in the existing backstepping‐based methods. A stability analysis is given, which shows that our control law can guarantee the semi‐global uniformly ultimate boundedness of the solution of the closed‐loop system, and makes the tracking error arbitrarily small. Moreover, the proposed control design scheme can also be directly applied to the strict‐feedback nonlinear systems with arbitrary uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.

对含有模型非线性不确定性和外部扰动的多Euler-Lagrange 系统的分布式协调包含控制问题进行研究. 考虑通讯拓扑为有向图, 所有领航者均为动态, 且各智能体间相对速度信息不可测情况. 首先, 选取相对速度作为辅助变量, 引入低通滤波器进行估计; 然后, 采用神经网络方法逼近并补偿非线性不确定性, 提出一种分布式自适应包含控制律, 并应用Lyapunov 稳定性理论证明闭环系统的包含误差一致最终有界; 最后, 通过仿真算例验证了所提出的控制律的有效性.

  相似文献   

6.
In this paper, the containment control problem is considered for nonlinear multi‐agent systems with directed communication topology. Under the guidance of designed distributed communication protocols with/without previous state information, the followers are expected to converge to a dynamic convex hull spanned by multiple leaders. Two multi‐step algorithms are proposed to construct the corresponding protocols, the state feedback protocol and the delay‐coupled protocol, under which the containment control can be achieved asymptotically. Furthermore, it is found that the delay‐coupled protocol is rather sensitive to time delays. That is, real‐time tracking will become impossible by only using long‐dated previous state information. Finally, a numerical example is given to demonstrate the applicability and efficiency of the proposed schemes.  相似文献   

7.
In this paper, the problem of neural adaptive dynamic surface quantized control is studied the first time for a class of pure‐feedback nonlinear systems in the presence of state and output constraint and unmodeled dynamics. The considered system is under the control of a hysteretic quantized input signal. Two types of one‐to‐one nonlinear mapping are adopted to transform the pure‐feedback system with different output and state constraints into an equivalent unconstrained pure‐feedback system. By designing a novel control law based on modified dynamic surface control technique, many assumptions of the quantized system in early literary works are removed. The unmodeled dynamics is estimated by a dynamic signal and approximated based on neural networks. The stability analysis indicates that all the signals in the closed‐loop system are semiglobally uniformly ultimately bounded, and the output and all the states remain in the prescribed time‐varying or constant constraints. Two numerical examples with a coarse quantizer show that the proposed approach is effective for the considered system.  相似文献   

8.
In this paper, the problem of distributed containment fault-tolerant control for a class of nonlinear multi-agent systems in strict-feedback form is studied. The considered nonlinear multi-agent systems are subject to unknown nonlinear functions and actuator faults with loss of effectiveness and lock-in-place. By resorting to the universal approximation capability of fuzzy logical systems, the command filtered backstepping technique and nonlinear fault-tolerant control theory, distributed controllers are designed recursively. From the Lyapunov stability theory, it is proved that all signals of the resulting closed-loop systems are cooperatively semi-globally uniformly ultimately bounded and the containment errors converge to a small neighbourhood of origin by properly tuning the design parameters. Finally, a numerical example is provided to show the effectiveness of the proposed control method.  相似文献   

9.
In this paper, we consider the robust output containment problem of linear heterogeneous multi-agent systems under fixed directed networks. A distributed dynamic observer based on the leaders’ measurable output was designed to estimate a convex combination of the leaders’ states. First, for the case of followers with identical state dimensions, distributed dynamic state and output feedback control laws were designed based on the state-coupled item and the internal model compensator to drive the uncertain followers into the leaders’ convex hull within the output regulation framework. Subsequently, we extended theoretical results to the case where followers have nonidentical state dimensions. By establishing virtual errors between the dynamic observer and followers, a new distributed dynamic output feedback control law was constructed using only the states of the compensator to solve the robust output containment problem. Finally, two numerical simulations verified the effectiveness of the designed schemes.   相似文献   

10.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

In existing researches on containment control of heterogeneous multi-agent systems (MASs), the solution is usually dependent on the solvability of regulator equations. However, the closed-form solution of many nonlinear regulator equations of systems is rarely obtained. Towards this end, in this paper the containment control problem of heterogeneous discrete-time nonlinear MASs subject to parameter uncertainties is considered, and the power series approach is adopted to solve complex regulator equations by decomposing them into a series of solvable linear equations. Then, a distributed robust control law based on internal model principle is presented by utilising the solution of the linear equations. Theoretical analysis shows that under certain assumptions asymptotic containment control is achieved for the heterogeneous discrete-time nonlinear MASs with sufficiently small parameter perturbations. Finally, a numerical simulation is implemented to verify the proposed control law.  相似文献   

12.
In this paper, distributed finite‐time containment control for multiple Euler‐Lagrange systems with communication delays and general disturbances is investigated under directed topology by using sliding‐mode control technique. We consider that the information of dynamic leaders can be obtained by only a portion of the followers. Firstly, a nonsingular fast terminal sliding surface is selected to achieve the finite‐time convergence for the error variables. Then, a distributed finite‐time containment control algorithm is proposed where the neural network is utilized to approximate the model uncertainties and external disturbances of the systems. Furthermore, considering that error constraint method can improve the performance of the systems, a distributed finite‐time containment control algorithm is developed by transforming the error variable into another form. It is demonstrated that the containment errors are bounded in finite time by using Lyapunov theory, graph theory, and finite‐time stability theory. Numerical simulations are provided to show the effectiveness of the proposed methods.  相似文献   

13.
This paper focuses on the problem of adaptive neural control for a class of uncertain nonlinear pure‐feedback systems with multiple unknown time‐varying delays. The considered problem is challenging due to the non‐affine pure‐feedback form and the unknown system functions with multiple unknown time‐varying delays. Based on a novel combination of mean value theorem, Razumikhin functional method, dynamic surface control (DSC) technique and neural network (NN) parameterization, a new adaptive neural controller which contains only one parameter is developed for such systems. Moreover, The DSC technique can overcome the problem of ‘explosion of complexity’ in the traditional backstepping design procedure. All closed‐loop signals are shown to be semi‐globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Two simulation examples are given to verify the effectiveness of the proposed design.  相似文献   

14.
This paper considers the mean square output containment control problem for heterogeneous multi-agent systems(MASs) with randomly switching topologies and nonuniform distributed delays. By modeling the switching topologies as a continuous-time Markov process and taking the distributed delays into consideration, a novel distributed containment observer is proposed to estimate the convex hull spanned by the leaders’ states.A novel distributed output feedback containment controller is then designed...  相似文献   

15.
This paper formulates and solves the robust H control problem for discrete‐time nonlinear switching systems. The H control problem is interpreted as the l2 finite gain control problem and is studied using a dissipative systems theory for switched systems. Both state and measurement feedback control problems are formulated as dynamic games and solved using dynamic programming. The partially observed dynamic game corresponding to the measurement feedback control problem is solved by transforming into a completely observed, full state infinite‐dimensional game problem using information states. Our results are illustrated with an example. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
This article investigates the containment control problem for a class of second-order multi-agent systems with inherent nonlinear dynamics, under the common assumption that each agent can only obtain the relative information of its neighbours intermittently. A kind of distributed protocol based only on the relative local intermittent measurements of neighbouring agents is designed for containment control under fixed directed topology. In the absence of delays, based on the Lyapunov function technology and the intermittent control method, some sufficient conditions are presented to guarantee the intermittent containment control of second-order nonlinear multi-agent systems. In the presence of delays, some containment conditions are also obtained for a second-order multi-agent systems with inherent delayed nonlinear dynamics and intermittent communications. Moreover, the similar results are obtained for second-order nonlinear multi-agent systems under switching directed topology. Finally, simulation examples are given to illustrate the correctness and effectiveness of the theoretical analysis.  相似文献   

17.
In this article, we consider the nonfragile containment control problem of nonlinear multi-agent systems (MASs) with exogenous disturbance where the communication links among agents under consideration is directed. Firstly, based on relative output measurements between the agent and its neighbors, a disturbance observer-based control protocol is proposed to solve the containment control problem of MASs with inherent nonlinear dynamics and exogenous disturbances. Secondly, because of the additional tuning of parameters in the real control systems, uncertainties in the designing of observer and controller gains always occur, and as a result, an output feedback controller with disturbance rejection is conceived and the containment control problem of nonlinear MASs with nonfragility is thoroughly investigated. Then, depending on matrix transformation and inequality technique, sufficient conditions of the designed controller gains exist, which is derived from the asymptotic stability analysis problem of some containment error dynamics of MASs. Finally, two simulation examples are exploited to illustrate the effectiveness of the proposed techniques.  相似文献   

18.
This paper addresses the containment control problem for a group of non-identical agents, where the dynamics of agents are supposed to be nonlinear with unknown parameters and parameterised by some functions. In controller design approach for each follower, adaptive control and Lyapunov theory are utilised as the main control strategies to guarantee the convergence of all non-identical followers to the dynamic convex hull formed by the leaders. The design of distributed adaptive controllers is based on the exchange of neighbourhood errors among the agents. For analysis of containment control problem, a new formulation has been developed using M-matrices. The validity of theoretical results are demonstrated through an example.  相似文献   

19.
This article considers the distributed containment control problem of nonlinear multi-agent systems subject to parameter uncertainties and external disturbances. An appropriate controlled output function is defined to quantitatively analyse the effect of external disturbances on the containment control problem. By employing robust H control approach, sufficient conditions in terms of linear matrix inequalities (LMIs) are derived to ensure that all followers asymptotically converge to the convex hull spanned by the leaders with the prescribed H performance under fixed topology. Moreover, the unknown feedback matrix of the proposed protocol is determined by solving only two LMIs with the same dimensions as a single agent. Finally, a numerical example is provided to demonstrate the effectiveness of our theoretical results.  相似文献   

20.
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号