首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper concerns the stability analysis of systems with interval time‐varying delay. A Lyapunov‐Krasovskii functional containing an augmented quadratic term and certain triple integral terms is constructed to integrate features of the truncated Bessel‐Legendre inequality less conservative than Wirtinger inequality that encompasses Jensen inequality, respectively, and to exploit merits of the newly developed double integral inequalities tighter than auxiliary function‐based, Wirtinger, and Jensen double integral inequalities. A new quadratic convex lemma is proposed to derive delay and its derivative dependent sufficient stability conditions in terms of linear matrix inequalities synthetically with reciprocal convex approach and affine convex combination. The efficiency of the presented method is illustrated on some classical numerical examples.  相似文献   

2.
3.
In this paper, an improved linear matrix inequality (LMI)‐based robust delay‐dependent stability test is introduced to ensure a larger upper bound for time‐varying delays affecting the state vector of an uncertain continuous‐time system with norm‐bounded‐type uncertainties. A quasi‐full‐size Lyapunov–Krasovskii functional is chosen and free‐weighting matrix approach is employed. Less restrictive sufficient conditions are derived for robust stability of time‐varying delay systems with norm‐bounded‐type uncertainties. Moreover, the investigation of the stabilization problem with memoryless state‐feedback control is presented such that the stabilizability criteria are obtained in terms of matrix inequalities, which can be solved via utilizing a cone complementarity minimization algorithm. Finally, the problem of output feedback stabilization for square systems is also taken into consideration. The output feedback stabilizability criteria are derived in the form of linear matrix inequalities, which are convex and can be easily solved using interior point algorithms. A plenty of numerical examples are presented indicating that the proposed stability and stabilization methods effectively improve the existing results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the stability analysis problems of discrete‐time systems with time‐varying delays using summation inequalities. In the literature focusing on the Lyapunov‐Krasovskii approach, the Jensen integral/summation inequalities have played important roles to develop less conservative stability criteria and thus have been widely studied. Recently, the Jensen integral inequality was successfully generalized to the Bessel‐Legendre inequalities constructed with arbitrary‐order Legendre polynomials. It was also shown that general inequality contributes to the less conservatism of stability criteria. In the case of discrete‐time systems, however, the Jensen summation inequality are hardly extensible to general ones since there have still not been general discrete orthogonal polynomials applicable to the developments of summation inequalities. Motivated by such observations, this paper proposes novel discrete orthogonal polynomials and then successfully derives general summation inequalities. The resulting summation inequalities are discrete‐time counterparts of the Bessel‐Legendre inequalities but are not based on the discrete Legendre polynomials. By developing hierarchical stability criteria based on the proposed summation inequalities, the effectiveness of the proposed approaches is demonstrated via three numerical examples for the stability analysis of discrete‐time systems with time‐varying delays.  相似文献   

5.
This paper is concerned with the problem of stability and stabilization of neutral time‐delay systems. A new delay‐dependent stability condition is derived in terms of linear matrix inequality by constructing a new Lyapunov functional and using some integral inequalities without introducing any free‐weighting matrices. On the basis of the obtained stability condition, a stabilizing method is also proposed. Using an iterative algorithm, the state feedback controller can be obtained. Numerical examples illustrate that the proposed methods are effective and lead to less conservative results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
This paper deals with the problem of obtaining delay‐dependent stability conditions and L2‐gain analysis for a class of nonlinear time‐delay systems with norm‐bounded and possibly time‐varying uncertainties. No restrictions on the derivative of the time‐varying delay are imposed, though lower and upper bounds of the delay interval are assumed to be known. A Lyapunov–Krasovskii functional approach is proposed to derive novel delay‐dependent stability conditions which are expressed in terms of linear matrix inequalities (LMIs). To reduce conservatism, the work exploits the idea of splitting the delay interval in multiple regions, so that specific conditions can be imposed to a unique functional in the different regions. This improves the computed bounds for certain delay‐dependent integral terms, providing less conservative LMI conditions. Examples are provided to demonstrate the reduced conservatism with respect to the available results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the problem of finite time stability of linear time‐varying system with delay. By constructing an augmented time‐varying Lyapunov functional and using the Wirtinger‐type inequality deductively, delay‐dependent finite time stability conditions are derived and presented in terms of differential linear matrix inequalities (DLMIs). Then, the DLMIs are transformed into a series of recursive linear matrix inequalities (RLMIs) by discretizing the time interval into equally spaced time distances, and an algorithm is given to solve the RLMIs. Examples illustrate the feasibility and effectiveness of the proposed method.  相似文献   

8.
This paper studies mean square exponential stability of linear stochastic neutral‐type time‐delay systems with multiple point delays by using an augmented Lyapunov‐Krasovskii functional (LKF) approach. To build a suitable augmented LKF, a method is proposed to find an augmented state vector whose elements are linearly independent. With the help of the linearly independent augmented state vector, the constructed LKF, and properties of the stochastic integral, sufficient delay‐dependent stability conditions expressed by linear matrix inequalities are established to guarantee the mean square exponential stability of the system. Differently from previous results where the difference operator associated with the system needs to satisfy a condition in terms of matrix norms, in the current paper, the difference operator only needs to satisfy a less restrictive condition in terms of matrix spectral radius. The effectiveness of the proposed approach is illustrated by two numerical examples.  相似文献   

9.
This paper investigates the stability of linear systems with a time-varying delay. The key problem concerned is how to effectively estimate single integral term with time-varying delay information appearing in the derivative of Lyapunov–Krasovskii functional. Two novel integral inequalities are developed in this paper for this estimation task. Compared with the frequently used inequalities based on the combination of Wirtinger-based inequality (or Auxiliary function-based inequality) and reciprocally convex lemma, the proposed ones can provide smaller bounding gap without requiring any extra slack matrix. Four stability criteria are established by applying those inequalities. Based on three numerical examples, the advantages of the proposed inequalities are illustrated through the comparison of maximal admissible delay bounds provided by different criteria.  相似文献   

10.
This work focuses on the absolute stability problem of Lurie control system with interval time‐varying delay and sector‐bounded nonlinearity. Firstly, we present a refined Wirtinger's integral inequality and establish an improved Wirtinger‐type double integral inequality. Secondly, a modified augmented Lyapunov‐Krasovskii functional (LKF) is constructed to analyze the stability of Lurie system, where the information on the lower and upper bounds of the delay and the delay itself are fully exploited. Based on the proposed integral inequalities and some bounding techniques, the upper bound of the derivative of the LKF can be estimated more tightly. Accordingly, the proposed absolute stability criteria, formulated in terms of linear matrix inequalities, are less conservative than those in previous literature. Finally, numerical examples demonstrate the effectiveness and advantage of the proposed method.  相似文献   

11.
The stability analysis problem is considered for linear discrete‐time systems with time‐varying delays. A novel summation inequality is proposed, which takes the double summation information of the system state into consideration. The inequality relaxes the recently proposed discrete Wirtinger inequality and its improved version. Based on construction of a suitable Lyapunov‐Krasovskii functional and the novel summation inequality, an improved delay‐dependent stability criterion for asymptotic stability of the systems is derived in terms of linear matrix inequalities. Numerical examples are given to demonstrate the advantages of the proposed method.  相似文献   

12.
This paper studies the problem of stability analysis for continuous‐time systems with time‐varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient stability criteria are obtained in terms of linear matrix inequalities. The merits of the proposed results lie in their less conservatism, which are realized by choosing different Lyapunov matrices in the decomposed integral intervals and estimating the upper bound of some cross term more exactly. Numerical examples are given to illustrate the effectiveness and less conservatism of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper concerns delay‐range‐dependent robust stability and stabilization for time‐delay system with linear fractional form uncertainty. The time delay is assumed to be a time‐varying continuous function belonging to a given range. On the basis of a novel Lyapunov–Krasovskii functional, which includes the information of the range, delay‐range‐dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state‐feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper proposes a novel summation inequality, say a polynomials‐based summation inequality, which contains well‐known summation inequalities as special cases. By specially choosing slack matrices, polynomial functions, and an arbitrary vector, it reduces to Moon's inequality, a discrete‐time counterpart of Wirtinger‐based integral inequality, auxiliary function‐based summation inequalities employing the same‐order orthogonal polynomial functions. Thus, the proposed summation inequality is more general than other summation inequalities. Additionally, this paper derives the polynomials‐based summation inequality employing first‐order and second‐order orthogonal polynomial functions, which contributes to obtaining improved stability criteria for discrete‐time systems with time‐varying delays. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
By employing the information of the probability distribution of the time delay, this paper investigates the problem of robust stability for uncertain systems with time‐varying delay satisfying some probabilistic properties. Different from the common assumptions on the time delay in the existing literatures, it is assumed in this paper that the delay is random and its probability distribution is known a priori. In terms of the probability distribution of the delay, a new type of system model with stochastic parameter matrices is proposed. Based on the new system model, sufficient conditions for the exponential mean square stability of the original system are derived by using the Lyapunov functional method and the linear matrix inequality (LMI) technique. The derived criteria, which are expressed in terms of a set of LMIs, are delay‐distribution‐dependent, that is, the solvability of the criteria depends on not only the variation range of the delay but also the probability distribution of it. Finally, three numerical examples are given to illustrate the feasibility and effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
In this note, we deal with the exponential stability and stabilization problems for quadratic discrete‐time systems with time delay. By using the quadratic Lyapunov function and a so called ‘Finsler's lemma', delay‐independent sufficient conditions for local stability and stabilization for quadratic discrete‐time systems with time delay are derived in terms of linear matrix inequalities (LMIs). Based on these sufficient conditions, iterative linear matrix inequality algorithms are proposed for maximizing the stability regions of the systems. Finally, two examples are given to illustrate the effectiveness of the methods presented in this paper.  相似文献   

17.
This paper develops a novel finite‐time control design for linear systems subject to time‐varying delay and bounded control. Based on the Lyapunov‐like functional method and using a result on bounding estimation of integral inequality, we provide some sufficient conditions for designing state feedback controllers that guarantee the robust finite‐time stabilization with guaranteed cost control. The conditions are obtained in terms of linear matrix inequalities (LMIs), which can be determined by utilizing the MATLAB LMI Control Toolbox. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

18.
This paper is concerned with the problem of stability analysis for continuous‐time/discrete‐time systems with interval time‐varying delay. Based on the idea of partitioning the delay interval into l nonuniform subintervals, new Lyapunov functionals are established. By utilizing the reciprocally convex approach to deal with the delay information in each subinterval, sufficient stability conditions are proposed in terms of linear matrix inequalities. Based on these criteria, the optimal partitioning method is given on the basis of the genetic algorithm. Finally, the reduced conservatism of the results in this paper is illustrated by numerical examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper describes a delay‐range‐dependent local state feedback controller synthesis approach providing estimation of the region of stability for nonlinear time‐delay systems under input saturation. By employing a Lyapunov–Krasovskii functional, properties of nonlinear functions, local sector condition and Jensen's inequality, a sufficient condition is derived for stabilization of nonlinear systems with interval delays varying within a range. Novel solutions to the delay‐range‐dependent and delay‐dependent stabilization problems for linear and nonlinear time‐delay systems, respectively, subject to input saturation are derived as specific scenarios of the proposed control strategy. Also, a delay‐rate‐independent condition for control of nonlinear systems in the presence of input saturation with unknown delay‐derivative bound information is established. And further, a robust state feedback controller synthesis scheme ensuring L2 gain reduction from disturbance to output is devised to address the problem of the stabilization of input‐constrained nonlinear time‐delay systems with varying interval lags. The proposed design conditions can be solved using linear matrix inequality tools in connection with conventional cone complementary linearization algorithms. Simulation results for an unstable nonlinear time‐delay network and a large‐scale chemical reactor under input saturation and varying interval time‐delays are analyzed to demonstrate the effectiveness of the proposed methodology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, a new method is proposed for stability analysis and synthesis of Takagi–Sugeno (T–S) fuzzy systems with time‐varying delay. Based on a new Lyapunov–Krasovskii functional (LKF), some less conservative delay‐dependent stability criteria are established. In the derivation process, some additional useful terms, ignored in previous methods, are considered and new free‐weighting matrices are introduced to estimate the upper bound of the derivative of LKF for T–S fuzzy systems with time‐varying delay. The proposed stability criterion and stabilization condition are represented in terms of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号