首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper is devoted to the global stabilization via output feedback for a class of nonlinear systems with unknown relative degree, dynamics uncertainties, unknown control direction, and nonparametric uncertain nonlinearities. In particular, the unknown relative degree is without known upper bound, which renders us to research for a filter with varying dimension rather than the ones with over dimensions in the existing literature. In comparison with more popular but a bit stronger input‐to‐state stable or input‐to‐state practically stable requirement, only bounded‐input bounded‐state stable requirement is imposed on the dynamics uncertainties, which affect the systems in a persistent intensity rather than in a decaying one. In this paper, to compensate multiple serious system uncertainties and realize global output‐feedback stabilization, a design scheme via switching logic together with varying dimensional filter is developed. In this scheme, 2 switching sequences, which separately generate the gains of the controller and act as the varying dimensions of the filter, are designed to overcome unknown control direction, dynamics uncertainties and nonparametric uncertain nonlinearities, and unknown relative degree, respectively. A 2‐mass lumped‐parameter structure is provided to show the effectiveness of the proposed method in this paper.  相似文献   

2.
    
In this paper, we propose a new universal output feedback adaptive controller to globally (or semiglobally) stabilize nonlinear output feedback systems, whose nonlinearities are bounded either by known functions with unknown parameters or by completely unknown functions. In addition, no a priori knowledge of the sign of high‐frequency gain is required. The new design focuses on properly arranging the control gains step by step in the filter backstepping design. Instead of Lyapunov‐based argument, an inductive contradiction argument is employed in the proof of stability, which is not common in literature.  相似文献   

3.
    
The output feedback adaptive control problem is investigated for nonholonomic systems with strongly nonlinear uncertainties and unknown virtual control directions. A nonlinear output feedback switching controller based on the output measurement of the first subsystem is employed in order to make the state scaling effective and ensure the convergence of the system states. The novel observer/estimator is introduced for state and unknown parameter estimates. The integrator backstepping technique by the use of a constructive recursive is applied to the design of the adaptive controller and to overcome the unknown virtual control directions. The simulation result validates the effectiveness of the proposed scheme.  相似文献   

4.
    
This paper addresses the global stabilization via adaptive output‐feedback for a class of uncertain nonlinear systems. Remarkably, the systems under investigation are with multiple uncertainties: unknown control directions, unknown growth rates and unknown input bias, and can be used to describe more physical plants. Multiple uncertainties, which usually cannot be compensated by a sole compensation technique, may give rise to big technical difficulty for controller design. To overcome such difficulty and to achieve the global stabilization, a new adaptive output‐feedback scheme is proposed in this paper, by flexibly combining Nussbaum‐type function, tuning function technique and extended state observer. It is shown that, under the designed controller, the system states globally converge to zero. A simulation example on non‐zero set‐point regulation is given to demonstrate the effectiveness of the theoretical results.  相似文献   

5.
    
This paper considers global output feedback stabilization via sampled‐data control for a general class of nonlinear systems, which admit unknown control coefficients and nonderivable output function. A sector region of the output function is given by utilizing a technical lemma, and a sampled‐data controller is designed by combining a robust state stabilizer and a reduced‐order sampled‐data observer. By carefully choosing an appropriate sampling period, the proposed controller guarantees the globally asymptotical stability of the closed‐loop systems.  相似文献   

6.
    
This paper addresses the neural network‐based output‐feedback control problem for a class of stochastic nonlinear systems with unknown control directions. The restrictions on the drift and diffusion terms are removed and the conditions on unknown control directions are relaxed. By introducing a proper coordinate transformation, and combining dynamic surface control (DSC) technique with radial basis function neural network (RBF NN) approximation approach, we construct an adaptive output‐feedback controller to guarantee the closed‐loop system to be mean square semi‐globally uniformly ultimately bounded (M‐SGUUB). A simulation example demonstrates the effectiveness of the proposed scheme.  相似文献   

7.
    
In this paper, we investigate the problem of global output feedback stabilization for a class of planar nonlinear systems under a more general growth condition, which encompasses both lower‐order and higher‐order state growths with output‐dependent rates. For more accurate estimation, two new observers with nonlinear gains are constructed to estimate the states on the lower‐order and higher‐order scales, respectively. The estimates produced from the dual‐observer are used delicately in the output feedback control law with both lower‐order and higher‐order modes. The overall stability of the system is guaranteed by rigorously choosing these nonlinear gains in the control law and the dual‐observer.  相似文献   

8.
    
This article focuses on the adaptive output feedback stabilization for a class of stochastic nonlinear systems whose drift and diffusion terms satisfy homogeneous growth conditions. Since the homogeneous growth rates are unknown, two dynamic gains are coupled into the full-order homogeneous observer. By virtue of adding a power integrator technique and the homogeneity theory, two adaptive laws and a homogeneous output feedback controller are designed. Based on the celebrated nonnegative semimartingale convergence theorem and the general stochastic Barbˇlat's lemma, it is indicated that all the signals of the closed-loop system are bounded almost surely, and all the system states of the closed-loop system converge to origin almost surely. Finally, the effectiveness of the proposed control scheme is verified by means of both numerical and practical examples.  相似文献   

9.
    
This paper investigates the output feedback control for the uncertain nonlinear system with the integral input‐to‐state stable (iISS) cascade subsystem, which allow not only the unknown control direction but also the unknown output function. The unknown output function only needs to have a generalized derivative (which may not be derivable), and the upper and lower bounds of the generalized derivative need not to be known. To deal with the challenge raised by the unknown output function and the unknown control direction, we choose a special Nussbaum function with a faster growth rate to ensure the integrability for the derivative of the selected Lyapunov function. Then, a dynamic output feedback controller is designed to drive the system states to the origin while keeping the boundedness for all other closed‐loop signals. Moreover, via some appropriate transformations, the proposed control scheme is extended to deal with more general uncertain nonlinear cascade systems with quantized input signals. Finally, two simulation examples are given to show the effectiveness of the control scheme.  相似文献   

10.
    
The adaptive tracking control strategy is investigated for a class of multi-input and multi-output pure-feedback nonlinear delayed systems with unknown dead-zone inputs. This problem is challenging due to the existence of unknown dead zones, time-varying delays and unavoidable state variables. By constructing fuzzy approximators and state observers, the difficulties from unknown nonlinearities and unavailable state variables are surmounted, respectively. Lyapunov–Krasovskii functions are introduced to deal with the time-varying delays. The adaptive controllers are designed by a backstepping method and adaptive technique so that the closed-loop systems remain stable and the target signals can be tracked within a small error as well. At last, two examples are provided to show the effectiveness of the proposed scheme.  相似文献   

11.
The paper is concerned with the global adaptive stabilisation via output feedback for a class of uncertain planar nonlinear systems. Remarkably, the unknowns in the systems are rather serious: the control coefficients are unknown constants which do not belong to any known interval, and the growth of the systems heavily depends on the unmeasured states and has the rate of unknown polynomial of output. First, a delicate state transformation is introduced to collect the unknown control coefficients, and subsequently, a suitable state observer is successfully designed with two different dynamic gains. Then, an adaptive output feedback controller is proposed by flexibly combining the universal control idea and the backstepping technique. Meanwhile, an appropriate estimation law is constructed to overcome the negative effect caused by the unknown control coefficients. It is shown that, with the appropriate choice of the design parameters, all the states of the resulting closed-loop system are globally bounded, and furthermore, the states of the original system converge to zero.  相似文献   

12.
    
This paper studies the problem of global practical tracking by output feedback for a class of uncertain nonlinear systems with unmeasured state‐dependent growth and unknown time‐varying control coefficients. Compared with the closely related works, the remarkableness of this paper is that the upper and lower bounds of unknown control coefficients are not required to be known a priori. Motivated by our recent works, by combining the methods of universal control and deadzone with the backstepping technique and skillfully constructing a novel Lyapunov function, we propose a new adaptive tracking control scheme with appropriate design parameters. The new scheme guarantees that the state of the resulting closed‐loop system is globally bounded while the tracking error converges to a prescribed arbitrarily small neighborhood of the origin after a finite time. Two examples, including a practical example, are given to illustrate the effectiveness of the theoretical results.  相似文献   

13.
    
In this paper, we investigate global decentralized sampled‐data output feedback stabilization problem for a class of large‐scale nonlinear systems with time‐varying sensor and actuator failures. The considered systems include unknown time‐varying control coefficients and inherently nonlinear terms. Firstly, coordinate transformations are introduced with suitable scaling gains. Next, a reduced‐order observer is designed to estimate unmeasured states. Then, a decentralized sampled‐data fault‐tolerant control scheme is developed with an allowable sampling period. By constructing an appropriate Lyapunov function, it can be shown that all states of the resulting closed‐loop system are globally uniformly ultimately bounded. Finally, the validity of the proposed control approach is verified by using two examples.  相似文献   

14.
研究了一类控制系数未知的高阶不确定非线性系统的自适应镇定控制设计. 尽管该问题已经得到解决,但是所设计的控制器是非线性反馈形式,较为复杂. 与现有文献不同,本文通过综合运用增加幂积分技术和切换自适应控制方法,给出了该控制问题的更为简单且易于实现的新型线性反馈控制器,使得系统状态有界且最终趋于零. 值得指出的是,与切换自适应控制文献相比,本文所研究的非线性系统具有更严重的不确定/未知性和更强的非线性,这主要体现在未知的系统控制系数和更高的系统幂次中.  相似文献   

15.
本文针对一类具有非严格反馈形式的非线性切换系统,在输出只在采样点可获得的情况下,提出了一种基于模糊采样观测器的自适应输出反馈控制方法.该方法降低了现有任意切换控制研究结果中因共同控制思想导致的控制器设计的保守性,避免了迭代过程对虚拟控制的反复求导引发的计算爆炸现象及控制器高增益的弊端.切换的自适应律突显了每个子系统的特...  相似文献   

16.
In recent years, several results have been proposed on the global stabilisation of non-linear systems with unknown linear growth rate. However, these works are limited in the sense that they consider only one particular form of non-linear systems–mostly either triangular or feedforward form. We propose an adaptive output feedback control scheme which can deal with both triangular or feedforward non-linear systems with unknown linear growth rate in a unified framework. Thus, our result broadens the class of non-linear systems under consideration over the existing results.  相似文献   

17.
This paper considers the global output-feedback stabilisation for power integrator systems with unknown control direction. The presence of uncontrollable and unobservable linearisation renders the strategy based on Nussbaum function rather difficult (even impossible) to compensate the unknown control direction. In this paper, to dominate the inherent nonlinearities and unknowns, a powerful switching strategy is proposed by combining an output-feedback scheme and a switching mechanism. First, a special case with known control direction is considered to provide a basic structure and selection rules of design parameters for the expected controller, and then, the essential case with unknown control direction is investigated to build a suitable switching logic to online tune the design parameters. The proposed switching-type output-feedback controller guarantees that all the system signals are globally bounded and ultimately converge to zero. A numerical example is given to illustrate the effectiveness of the proposed methods.  相似文献   

18.
    
This paper investigates the quantized feedback control for nonlinear feedforward systems with unknown output functions and unknown control coefficients. The unknown output function is Lipschitz continuous but may not be derivable, and the unknown control coefficients are assumed to be bounded. To deal with this challenging quantized control problem, a time‐varying low‐gain observer is designed and a delicate time‐varying scaling transformation is introduced, which can avoid using the derivative information of the output function. Then, based on the well‐known backstepping method and the sector bound approach, a time‐varying quantized feedback controller is designed using the quantized output, which can achieve the boundedness of the closed‐loop system states and the convergence of the original system states. Moreover, a guideline is provided for choosing the parameters of the input and output quantizers such that the closed‐loop system is stable. Finally, two simulation examples are given to show the effectiveness of the control scheme.  相似文献   

19.
We investigate the global robust tracking problem via output feedback for a class of cascade nonlinear systems with dynamic uncertainties and non-vanishing disturbances. It does not require a priori knowledge of the sign of the high-frequency gain. A recursive design scheme is presented using the ideas of pseudosign function, Nussbaum-type gain technique and the deadzone method. It is shown that under some conditions, the tracking error can be guaranteed asymptotic to the interval [?ε, ε]?? with arbitrary prescribed ε>0 after a finite time, while keeping all signals of the resulting closed-loop systems bounded. The simulation results demonstrate the effectiveness of the proposed algorithm.  相似文献   

20.
郭涛  张军英 《控制理论与应用》2009,26(12):1387-1390
针对一类不确定非线性时变时滞系统,提出了一种简化的自适应模糊动态面控制方法.该方法取消了对系统时滞常做的假设.仅采用一个模糊逼近器便使所有的未知函数得到补偿,简化了控制器的结构.通过构造合适的Lyapunov-Krasovskii泛函,闭环系统的所有信号被证明为半全局一致最终有界.仿真实例进一步验证了控制方案的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号