共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper investigates the periodic event‐triggered control problem for distributed networked multiagent systems with interconnected nonlinear dynamics subject to asynchronous communication. A method of state trajectory estimation for the interconnected neighboring agents over each prediction horizon with guaranteed error bounds is addressed to handle the asynchronous communication. Based on it, a distributed robust model predictive control (MPC) is proposed with a distributed periodic event‐triggered scheme for each agent. According to this algorithm, each subsystem generates presumed state trajectories for all its upstream neighbors and computes its own control locally. By checking the designed triggering condition periodically, the optimization problem of MPC will be implemented and solved when the local error of the subsystem exceeds a specified threshold. Then, the optimized control input will be determined and applied until the next time instant when the triggering condition is invoked. Moreover, sufficient condition for ensuring feasibility of the designed algorithm is conducted, along with the analysis of asymptotic stabilization of the closed‐loop system. The illustrative example for a set of coupled Van der Pol oscillators is reported to verify the effectiveness of the proposed approach. 相似文献
2.
This paper investigates the resilient control problem for constrained continuous‐time cyber‐physical systems subject to bounded disturbances and denial‐of‐service (DoS) attacks. A sampled‐data robust model predictive control law with a packet‐based transmission scheduling is taken advantage to compensate for the loss of the control data during the intermittent DoS intervals, and an event‐triggered control strategy is designed to save communication and computation resources. The robust constraint satisfaction and the stability of the closed‐loop system under DoS attacks are proved. In contrast to the existing studies that guarantee the system under DoS attacks is input‐to‐state stable, the predicted input error caused by the system constraints can be dealt with by the input‐to‐state practical stability framework. Finally, a simulation example is performed to verify the feasibility and efficiency of the proposed strategy. 相似文献
3.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
We consider a distributed consensus problem for continuous‐time multi‐agent systems with set constraints on the final states. To save communication costs, an event‐triggered communication‐based protocol is proposed. By comparing its own instantaneous state with the one previously broadcasted to neighbours, each agent determines the next communication time. Based on this event‐triggered communication, each agent is not required to continuously monitor its neighbours' state and the communication only happens at discrete time instants. We show that, under some mild conditions, the constrained consensus of the multi‐agent system with the proposed protocol can be achieved with an exponential convergence rate. A lower bound of the transmission time intervals is provided that can be adjusted by choosing different values of parameters. Numerical examples illustrate the results. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
5.
This paper considers the leader‐following control problem of multiple mechanical systems with uncertainty and velocity constraints. So as to deal with the velocity constraints, a reduction procedure is applied to transform the model of each system to a cascaded system. With the aid of the cascade structure of each system and the properties of linear time‐varying systems, distributed robust feedback controllers are proposed such that the state of each follower system asymptotically converges to the state of a leader system with the aid of neighbors' information. So as to reduce the cost of the communication between systems, an event‐triggered leader‐following control problem is also considered, and event‐triggered distributed controllers are proposed. As an application of the proposed results, formation control of wheeled mobile robots is considered, and distributed controllers are obtained with the aid of the results in Theorems 1 and 2. Simulation results show the effectiveness of the proposed results. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
6.
This paper presents an event‐triggered predictive control approach to stabilize a networked control system subject to network‐induced delays and packet dropouts, for which the states are not measurable. An observer‐based event generator is first designed according to the deviation between the state estimation at the current time and the one at the last trigger time. A predictive control scheme with a selector is then proposed to compensate the effect of network‐induced delays and packet dropouts. Sufficient conditions for stabilization of the networked control system are derived by solving linear matrix inequalities and the corresponding gains of the controller and the observer are obtained. It is shown that the event‐triggered implementation is able to realize reduction in communication and save bandwidth resources of feedback channel networks. A simulation example of an inverted pendulum model illustrates the efficacy of the proposed scheme. 相似文献
7.
This article addresses the problem of global adaptive finite‐time control for a class of p‐normal nonlinear systems via an event‐triggered strategy. A state feedback controller is first designed for the nominal system by adding a power integrator method. Then, by the skillful design of adaptive dynamic gain mechanism, a novel event‐triggered controller is constructed for uncertain nonlinear system without homogeneous growth condition. It is proved that the global finite‐time stabilization of p‐normal nonlinear systems is guaranteed and the Zeno phenomenon is excluded. Finally, two examples are presented to indicate the effectiveness of the proposed control scheme. 相似文献
8.
This paper considers a class of cyber‐physical networked systems, which are composed of many interacted subsystems, and are controlled in a distributed framework. The operating point of each subsystem changes with the varying of working conditions or productions, which may cause the change of the interactions among subsystems correspondingly. How to adapt to this change with good closed‐loop optimization performance and appropriate information connections is a problem. To solve this problem, the impaction of a subsystem's control action on the performance of related closed‐loop subsystems is first deduced for measuring the coupling among subsystems. Then, a distributed model predictive control (MPC) for tracking, whose subsystems online reconfigure their information structures, is proposed based on this impaction index. When the operating points changed, each local MPC calculates the impaction indices related to its structural downstream subsystems. If and only if the impaction index exceeds a defined bound, its behavior is considered by its downstream subsystem's MPC. The aim is to improve the optimization performance of entire closed‐loop systems and avoid the unnecessary information connections among local MPCs. Besides, contraction constraints are designed to guarantee that the overall system converges to the set points. The stability analysis is also provided. Simulation results show that the proposed impaction index is reasonable along with the efficiency of the proposed distributed MPC. 相似文献
9.
In this work, a new self‐triggered model predictive control (STMPC) algorithm is proposed for continuous‐time networked control systems. Compared with existing STMPC algorithms, the proposed STMPC is implemented based on linear interpolation (first‐order hold) rather than the standard zero‐order hold, which helps further reduce the difference between the self‐triggered control signal and the original time‐triggered counterpart and thus reduce the rate of triggering. Based on the first‐order hold implementation, a self‐triggering condition is derived and the corresponding theoretical properties of the closed‐loop system are analyzed. Finally, the comparison between the proposed algorithm and the zero‐order hold–based STMPC is carried out through both theoretical analysis and a simulation example to illustrate the effectiveness of the proposed method. 相似文献
10.
This paper studies the leader‐following consensus problem for Lipschitz nonlinear multi‐agent systems using novel event‐triggered controllers. A distributed adaptive law is introduced for the event‐based control strategy design such that the proposed controllers are independent of system parameters and only use the relative states of neighboring agents, and hence are fully distributed. Due to the introduction of an event‐triggered control scheme, the controller of the agent is only triggered at it's own event times, and thus reduces the amount of communication between controller and actuator and lowers the frequency of controller updates in practice. Based on a quadratic Lyapunov function, the event condition which uses only neighbor information and local computation at trigger instants is established. Infinite triggers within a finite time are also verified to be impossible. The effectiveness of the theoretical results are illustrated through simulation examples. 相似文献
11.
This paper investigates the event‐triggered control of linear systems with saturated state feedback and saturated observer‐based feedback, respectively. The problem of simultaneously deriving stabilizing event‐triggered controllers and tackling saturation nonlinearity is cast into a standard linear matrix inequalities problem. Key topics are studied, such as event‐triggered observer design and event‐triggered saturated observer‐based feedback synthesis. Important issues are touched on, including the existence of the positive lower bound for inter‐event times, and self‐triggered algorithms. 相似文献
12.
This paper is concerned with a tracking control problem of multi‐agent systems with noises. It is assumed that each agent in the network updates its state only at some discrete time instants, which determined by the event‐triggered condition, and the agents are affected by noises. In order to attenuate the effect of noises, consensus‐gain function is introduced in the control protocol. Centralized and decentralized event‐triggered protocols are proposed to ensure that the followers track the considered leader. With the help of matrix theory and Lyapunov method, sufficient conditions are derived to solve the mean square tracking control. Simulation results are provided to illustrate the theoretical results. 相似文献
13.
This paper focuses on the event‐based distributed robust leaderless synchronization control for multiple Euler‐Lagrange systems with directed communication topology that contains a directed spanning tree. Update frequency of the system is reduced by taking advantages of the event‐triggered approach, which can help extend the service life of the controller. Robust control theory is employed to guarantee the synchronization stability of the networked Euler‐Lagrange systems when unmodeled dynamics occur. The cost on the distributed synchronization protocol design can be saved due to the relaxation of the requirement on relative velocity measurements. Furthermore, our results are more practical because unknown disturbance is taken into consideration. In addition, it can be rigorously analyzed that each agent can exclude the undesired Zeno behavior. Some simulation examples are provided in the end to demonstrate the effectiveness of the proposed event‐based distributed robust control algorithm. 相似文献
14.
本文针对一类由状态相互耦合的子系统组成的分布式系统, 提出了一种可以处理输入约束的保证稳定性的非迭代协调分布式预测控制方法(distributed model predictive control, DMPC). 该方法中, 每个控制器在求解控制率时只与其它控制器通信一次来满足系统对通信负荷限制; 同时, 通过优化全局性能指标来提高优化性能. 另外, 该方法在优化问题中加入了一致性约束来限制关联子系统的估计状态与当前时刻更新的状态之间的偏差, 进而保证各子系统优化问题初始可行时, 后续时刻相继可行. 在此基础上, 通过加入终端约束来保证闭环系统渐进稳定. 该方法能够在使用较少的通信和计算负荷情况下, 提高系统优化性能. 即使对于强耦合系统同样能够保证优化问题的递推可行性和闭环系统的渐进稳定性. 仿真结果验证了本文所提出方法的有效性. 相似文献
15.
In this paper, we proposed a new hybrid control algorithm to achieve leader–follower flocking in multi‐agent systems. In the algorithm, the position is transmitted continuously, whereas the velocity is utilized discretely, which is governed by a distributed event‐triggered mechanism, and the neighbors' velocity is not required to detect the event‐triggered condition for each agent. It is shown that stable flocking is achieved asymptotically while the connectivity of networks is preserved. A numerical example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Model predictive control (MPC) is capable to deal with multiconstraint systems in real control processes; however, the heavy computation makes it difficult to implement. In this paper, a dual‐mode control strategy based on event‐triggered MPC (ETMPC) and state‐feedback control for continuous linear time‐invariant systems including control input constraints and bounded disturbances is developed. First, the deviation between the actual state trajectory and the optimal state trajectory is computed to set an event‐triggered mechanism and reduce the computational load of MPC. Next, the dual‐mode control strategy is designed to stabilize the system. Both recursive feasibility and stability of the strategy are guaranteed by constructing a feasible control sequence and deducing the relationship of parameters, especially the inter‐event time and the upper bound of the disturbances. Finally, the theoretical results are supported by numerical simulation. In addition, the effects of the parameters are discussed by simulation, which gives guidance to balance computational load and control performance. 相似文献
17.
This paper studies the robustness of model‐based event‐triggered control systems with respect to the differences between the plant and model matrices. Two types of event conditions, which involve an additional threshold variable and the norm of model states, are investigated, respectively. The tunable parameters in both the event conditions are designed according to the differences between the plant and model matrices. Also, the uncertainties in the plant matrices are considered, and the asymptotic stability can be guaranteed robustly. Moreover, the relationship between the tunable parameters and the model matrices is revealed. Namely, on the one hand, there exists a range of the tunable parameters such that the closed‐loop system is asymptotically stable with model matrices in any compact set. On the other hand, if the differences between the plant and model matrices are small enough, the tunable parameters can be set arbitrarily large. Finally, a numerical example is provided to illustrate the efficiency and feasibility of the obtained results. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
This paper addresses the problem of event‐triggered stabilization for positive systems subject to input saturation, where the state variables are in the nonnegative orthant. An event‐triggered linear state feedback law is constructed. By expressing the saturated linear state feedback law on a convex hull of a group of auxiliary linear feedback laws, we establish conditions under which the closed‐loop system is asymptotically stable with a given set contained in the domain of attraction. On the basis of these conditions, the problem of designing the feedback gain and the event‐triggering strategy for attaining the largest domain of attraction is formulated and solved as an optimization problem with linear matrix inequality constraints. The problem of designing the feedback gain and the event‐triggering strategy for achieving fast transience response with a guaranteed size of the domain of attraction is also formulated and solved as an linear matrix inequality problem. The effectiveness of these results is then illustrated by numerical simulation. 相似文献
19.
This paper presents a distributed consensus algorithm that employs event‐triggered communication for multiple underactuated systems under Markovian switching topologies. Instead of the general stochastic topology, the graph of the entire system is governed by a set of Markov chains to the edges, which can recover the general Markovian switching topologies in line with the practical communication network. By utilizing integral sliding mode control strategy, rigorous analysis of the asymptotic convergence results has been performed through graph theory and Lyapunov stability theory. An event‐triggered communication law is provided for each agent and Zeno behavior of triggering time sequences is excluded. It will yield to the very first application of the multiple underactuated systems, in which the system states could be enforced to track the leader. Finally, the illustrative simulations on six underactuated two‐link manipulators are given to demonstrate the effectiveness of theoretical results. 相似文献
20.
本文针对有界扰动作用下的线性离散大系统,提出了事件触发双模分布式预测控制设计方法.利用输入状态稳定性(input-to-state stability,ISS)理论建立了仅与子系统自身信息相关的事件触发条件.只有子系统满足相应的事件触发条件,才进行状态信息的传输和分布式预测控制优化问题的求解,并与邻域子系统交互最优解作用下的关联信息.当子系统进入不变集时,采用状态反馈控制律进行镇定,并与进入不变集的邻域子系统不再交互信息.分析了算法的递推可行性和系统的闭环稳定性,给出了扰动的上界.最后,通过车辆控制系统对算法进行仿真验证,结果表明,本文提出的方法能够有效降低优化问题的求解次数和关联信息的交互次数,节约计算资源和通信资源. 相似文献