首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic system of relative degree two controlled by discontinuous‐hybrid‐impulsive feedback in the presence of bounded perturbations is considered. The state feedback impulsive‐twisting control exhibits a uniform exact finite time convergence to the second‐order sliding mode with zero convergence time. The output feedback discontinuous control augmented by a simplified hybrid‐impulsive functions provides uniform exact convergence with zero convergence time of the system's states to a real second‐order sliding mode in the presence of bounded perturbations. Only ‘snap’ knowledge of the output derivative, that is, the knowledge of the output derivative in isolated time instants, is required. The output feedback hybrid‐impulsive control with practically implemented impulsive actions asymptotically drives the system's states to the origin. The Lyapunov analysis of the considered hybrid‐impulsive‐discontinuous system proves the system's stability. The efficacy of the proposed control technique is illustrated via computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Second‐order sliding mode (SOSM) control is used to keep exactly a constraint σ of the second relative degree or to avoid chattering phenomenon. Yet, the traditional SOSM controllers are designed based upon the assumption that the uncertainties or their derivatives are bounded by positive constants. In this paper, a global SOSM controller is designed for a general class of single‐input–single‐output nonlinear systems with uncertainties bounded by positive functions. Moreover, a variable‐gain robust exact differentiator is developed such that the SOSM controllers with finite‐time convergence can also be implemented even when the derivative of the constraint σ is unavailable. Simulation results are given to show the effectiveness of the proposed method.  相似文献   

3.
In this paper, a new second‐order sliding mode output feedback control law is proposed. It amounts to approach the dynamic performance of the twisting algorithm, but the main advantage of this new control method is that it requires only the information of the sliding variable, and not its derivative. A gain adaptation law is also developed for this new control law. Then this control strategy is applied to the position control of an electropneumatic system, and its performance is compared with other two very recent adaptive second‐order sliding mode control laws. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
To design an rth (r>2) order sliding mode control system, a sliding variable and its derivatives of up to (r ? 1) are in general required for the control implementation. This paper proposes a reduced‐order design algorithm using only the sliding variable and its derivatives of up to (r ? 2) as the extension of the second‐order asymptotic sliding mode control. For a linear time‐invariant continuous‐time system with disturbances, it is found that a high‐order sliding mode can be reached locally and asymptotically by a reduced‐order sliding mode control law if the sum of the system poles is less than the sum of the system zeros. The robust stability of the reduced‐order high‐order sliding mode control system, including the convergence to the high‐order sliding mode and the convergence to the origin is proved by two Lyapunov functions. Simulation results show the effectiveness of the proposed control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A passivity‐based sliding mode control for a class of second‐order nonlinear systems with matched disturbances is proposed in this paper. Firstly, a nonlinear sliding surface is designed using feedback passification, in which the passivity is employed to guarantee the closed‐loop system's stability. The passivity‐based controller comprising a discontinuous term guarantees globally asymptotical convergence to the sliding surface. A sliding mode‐based control law that satisfies the reaching and sliding condition is also developed. Moreover, the passivity‐based sliding mode observer is also developed to effectively estimate the system states. Compared with conventional sliding mode control, the proposed control scheme has a shorter reaching time; and hence, the system performance is less affected by disturbances, thus eliminating the need to increase the control input gain. Finally, simulation results demonstrate the validity of the proposed method.  相似文献   

6.
High‐order sliding mode control techniques are proposed for uncertain nonlinear SISO systems with bounded uncertainties based on two different terminal sliding mode approaches. The tracking error of the output converges to zero in finite time by designing a terminal sliding mode controller. In addition, the adaptive control method is employed to identify bounded uncertainties for eliminating the requirement of boundaries needed in the conventional design. The controllers are derived using Lyapunov theory, so the stability of the closed‐loop system is guaranteed. In the first technique, the developed procedure removes the reaching phase of sliding mode and realizes global robustness. The proposed algorithms ensure establishment of high‐order sliding mode. An illustrative example of a car control demonstrates effectiveness of the presented designs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a novel scheme for identification and control of an electro‐hydraulic system using recurrent neural networks. The proposed neural network has the nonlinear block control form structure. A sliding‐mode control technique is applied then to design a discontinuous controller, which is able to track a force reference trajectory. Due to the presence of an unmodelled dynamics, the standard sliding‐mode controller produces oscillations (or ‘chattering’) in the closed‐loop system. The second‐order sliding mode is used to eliminate the undesired chattering effect. Simulations are presented to illustrate the results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
A new high‐order sliding mode controller is proposed. The main features are gain adaptivity and the use of integral sliding mode concept. The gain adaptation allows a reduction of the chattering and gives a solution to control uncertain nonlinear systems whose the uncertainties/perturbations have unknown bounds. The concept of real high‐order sliding mode detector is introduced given that it plays a key role in the adaptation law of the gain. This new control approach is applied by simulation to an academic example to evaluate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The technique of linear matrix inequalities is a powerful method for solving optimization problems. In this paper, a sliding function vector was calculated using linear matrix inequalities approach. This technique provided optimal values of the coefficients of the sliding function vector, which led to the reduction of the reachability phase. Then, a discrete second‐order sliding mode control for multivariable systems was developed using this optimal sliding function vector. Two examples were used in order to illustrate the effectiveness of the proposed strategy. Simulation results prove good performances in terms of reduction of the reachability phase. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The concept of discrete higher‐order sliding mode has received increased attention in the recent literature. This paper presents an optimal discrete higher‐order sliding mode control for an uncertain discrete LTI system using partial state information, which has been missing in literature. A new technique is proposed to design an optimal time‐varying higher‐order sliding surface and control input through the minimization of a quadratic performance index. Moreover, disturbance estimation technique is utilized to modify the control algorithm to reduce the width of the discrete higher‐order sliding mode band. The proposed algorithm is experimentally validated on a rectilinear plant. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
This paper proposes a sliding surface which renders the system dynamics to start directly from itself without a reaching phase. More specifically, the system dynamics is insensitive to matched disturbances/uncertainties throughout the entire system response. The controller design based on reduced‐order subsystem is still preserved. It is different from integral sliding mode in which the design is based on the full order of the system to reach the same objective. The simulation results of its application to a fractional inverted pendulum system is demonstrated.  相似文献   

13.
Sliding mode control design for systems with relative degree r requires a number r ? 1 of time‐derivatives of the system output, which usually leads to deterioration of the whole scheme; if the highest‐order derivative is spared, a better precision is ensured. This paper proposes a control algorithm that guarantees reaching a second‐order sliding manifold using only r ? 2 derivatives of the system output. This objective is achieved at the price of yielding finite‐time convergence while preserving the essential feature of insensitivity to matched disturbances. The results take full advantage of convex representations and linear matrix inequalities, whose formulation easily allows dealing with unmatched disturbances by convex optimization techniques already implemented in commercially available software. Simulation examples are included to show the effectiveness of the proposed approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A higher order sliding mode control scheme for uncertain nonlinear systems is proposed in the present paper. It is shown that the problem is equivalent to the finite time stabilization of higher order input-output dynamics with bounded uncertainties (rN). The controller uses integral sliding mode concept and contains two parts. A part achieves finite time stabilization of the higher order input-output dynamics without uncertainties. The other part rejects bounded uncertainties throughout the entire response of the system. As a result, a higher order sliding mode is established. The advantages of the method are that its implementation is easy, the time convergence is chosen in advance and the robustness is ensured. An illustrative example of a car control shows the applicability of the method.  相似文献   

15.
This paper considers the nonsingular terminal sliding mode (TSM) controller design for a nonlinear second‐order system subject to input saturation. A new nonsingular TSM manifold is constructed by integrating the conventional nonsingular TSM manifold with a saturation function. When the bound of the uncertainty is known, based on the designed TSM manifold, a saturated controller can be designed directly for the nonlinear system. When the bound of the uncertainty is unknown, a disturbance observer is first employed to estimate the uncertainty, followed by constructing a composite controller consisting of a bounded feedback controller and a forward compensator. Theoretical analysis shows that under the proposed two control methods, the states of the closed‐loop system will both converge to zero in finite time. Simulation results demonstrate the effectiveness of the proposed methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
In this work we address the tracking control problems for autonomous underwater vehicles (AUVs). The proposed solution is based on the variable structure systems (VSS) theory and, in particular, on the second‐order sliding‐mode (2‐SM) methodology. The tuning of the controller is carried out via black‐box approach, dispensing with the knowledge of the actual AUV parameters, by simply progressively increasing a single gain parameter. The presented stability analysis includes explicitly the unmodelled actuator dynamics and the presence of external uncertain disturbances. The good performance of the proposed scheme is verified by means of simulations on a 6‐DOF AUV. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The research on discrete‐time higher‐order sliding mode has received a considerable attention recently. Systems with unmatched uncertainties are common in practice; however, the existing discrete‐time higher‐order sliding mode control algorithms are designed considering only matched uncertainty. This paper proposes a technique to design discrete‐time higher‐order sliding mode control for an uncertain LTI system in the presence of unmatched uncertainty. The proposed technique is numerically simulated and experimentally validated on an electromechanical rectilinear plant. Various experiments are conducted considering the several operational conditions of electromechanical systems in industries to verify the performance of the proposed controller.  相似文献   

18.
提出基于二阶滑模的控制方法控制永磁同步电动机(PMSM)中的混沌现象。利用Lyapunov函数构造了一种新的滑模面,能保证在滑模面上系统状态在有限时间内稳定到原点。控制器的设计采用了光滑二阶滑模方法,控制输入为光滑的函数,能有效消除抖振现象。仿真的结果也验证了控制方法的有效性。  相似文献   

19.
This paper presents a robust fault tolerant control for an induction motor in presence of inter‐turn short‐circuit fault. The control strategy is based on Backstepping approach and high order sliding mode observer. That ensures a high‐performance control and a good dynamic in presence of inter‐turn short‐circuit fault. The stability of the Backstepping control is proved by Lyapunov theory. A high order sliding mode observer is used for rotor flux estimation. The performances of the fault tolerant control scheme will be examined via numerical simulation and validated through hardware implementation using MATLAB/Simulink with dSpace signal card. The analysis' results show the robustness of the proposed method for the tolerance of the inter‐turn short‐circuit fault.  相似文献   

20.
The attitude fault‐tolerant control problem for a satellite with reaction‐wheel failures, uncertainties, and unknown external disturbances is investigated in this paper. Firstly, an iterative learning observer (ILO) is proposed to achieve fault detection, isolation, and estimation. Secondly, based on the ILO, a third‐order sliding mode controller is proposed to stabilize the satellite attitude rapidly under unknown external disturbances and reaction‐wheel faults. Thirdly, the asymptotically stability of the ILO and the third‐order sliding mode controller is proved by using the Lyapunov stability theory. Finally, simulation results demonstrate that the proposed control scheme is more effective and feasible by comparing with other fault‐tolerant control approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号