首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates event‐triggered output feedback H control for a networked control system. Transmitted through a network under an event‐triggered scheme, the sample outputs of the plant are used to drive the dynamical output feedback controller to generate a new control signal in the discrete‐time domain. The discrete‐time control signals are also transmitted through the network to drive the plant. As a result of two types of transmission delays, the controlled plant and the dynamical output feedback controller are driven by the discrete‐time outputs and control signals at different instants of time. An interval decomposition method is introduced to place the controlled plant and the output feedback controller into the same updated time interval but with updated signals at different instants. Based on a proper Lyapunov‐Krasovskii functional, sufficient conditions are derived to ensure H performance for the controlled plant. Finally, numerical simulations are used to demonstrate the practical utility of the proposed method.  相似文献   

2.
3.
This paper deals with the problem of designing an H2 controller for a networked control system (NCS) with communication delays from the sensor to the controller and/or from the controller to the plant. Our objective is to design a robust controller that will not only stabilize the system but also achieve a sub‐opti‐ mal H2 performance in the face of possible communication delays. Both the state feedback control and output feedback control are considered. The feedback control problem for the original system is first converted to a static output feedback control problem. A recursive linear matrix inequality (LMI) algorithm is then presented to compute a state or output feedback H2 controller for the system. Our approach allows a fixed order controller. Numerical examples are given to demonstrate the effectiveness of the proposed approach.  相似文献   

4.
In this article, the problem of robust output feedback attitude stabilization control for a class of uncertain spacecraft is investigated, which contains external disturbances, model parameter uncertainty, unknown and uncertain inertia, controller's gain perturbations, measurement errors, and input saturation. The aim of this work is to design a dynamic output feedback controller such that the closed‐loop attitude system is stabilized, while the H norm of the transfer function from the lumped disturbance and measurement error to output is ensured to be less than a pre‐specified disturbance attenuation level, and the actual control input is confined into a certain range simultaneously. Based on the Lyapunov theory, the existence conditions of such controller are derived in terms of linear matrix inequalities. It is worth mentioning that the controller's additive and multiplicative perturbations are accounted for respectively. An illustrative example is given to demonstrate the effectiveness and advantage of the proposed control design method.  相似文献   

5.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the problem of almost disturbance decoupling (ADD) via sampled‐data output feedback control for a class of uncertain nonlinear systems subject to time‐delays. Based on output feedback domination approach, a sampled‐data output feedback controller is designed to globally stabilize the system under a lower‐triangular linear growth condition. Gronwall‐Bellman‐like inequality and inductive method are introduced to estimate the state growth in the presence of time‐delays, uncertain nonlinearities and unknown disturbances. The proposed controller can attenuate the influence of disturbances on the output to an arbitrary degree in the L2 gain sense. Finally, simulation results show the effectiveness of the control method.  相似文献   

7.
This paper studies the resilient (non‐fragile) H∞ output‐feedback control design for discrete‐time uncertain linear systems with controller uncertainty. The design considers parametric norm‐bounded uncertainty in all state‐space matrices of the system, output and controller equations. The paper shows that the resilient H∞ output‐feedback control problem is equivalent to a scaled H∞ output‐feedback control problem of an auxiliary system without any system or controller uncertainty. Using the existing optimal H∞ design to solve the auxiliary system, the design guarantees that the resultant closed‐loop systems are quadratically stable with disturbance attenuation γ for all admissible system and controller uncertainties. A numerical example is given to illustrate the design method and its benefits.  相似文献   

8.
This paper presents an approximation design for a decentralized adaptive output‐feedback control of large‐scale pure‐feedback nonlinear systems with unknown time‐varying delayed interconnections. The interaction terms are bounded by unknown nonlinear bounding functions including unmeasurable state variables of subsystems. These bounding functions together with the algebraic loop problem of virtual and actual control inputs in the pure‐feedback form make the output‐feedback controller design difficult and challenging. To overcome the design difficulties, the observer‐based dynamic surface memoryless local controller for each subsystem is designed using appropriate Lyapunov‐Krasovskii functionals, the function approximation technique based on neural networks, and the additional first‐order low‐pass filter for the actual control input. It is shown that all signals in the total controlled closed‐loop system are semiglobally uniformly bounded and control errors converge to an adjustable neighborhood of the origin. Finally, simulation examples are provided to illustrate the effectiveness of the proposed decentralized control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a new method to construct a decentralized nonlinear robust H controller for a class of large‐scale nonlinear uncertain systems. The admissible uncertainties and nonlinearities in the system satisfy integral quadratic constraints and global Lipschitz conditions, respectively. The decentralized controller, which is required to be stable, is capable of exploiting known nonlinearities and interconnections between subsystems without treating them as uncertainties. Instead, additional uncertainties are introduced because of the discrepancies between nondecentralized and decentralized nonlinear output feedback controllers. The H control objective is to achieve an absolutely stable closed‐loop system with a specified disturbance attenuation level. A solution to this control problem involves stabilizing solutions to algebraic Riccati equations parametrized by scaling constants corresponding to the uncertainties and nonlinearities. This formulation is nonconvex; hence, an evolutionary optimization method is applied to solve the control problem considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, decentralized robust H output feedback control problem for large-scale interconnected system with value bounded uncertainties in the state, control input and interconnection matrices is investigated. A new bounded real lemma for the large-scale interconnected systems is derived by Lyapunov stability theory and linear matrix inequality method. Based on the new bounded real lemma, a sufficient condition expressed as matrix inequalities for the existence of a decentralized robust H output feedback controller is obtained. The controller which enables the closed-loop large-scale system robust stable and satisfies the given H performance is designed through a homotopy iterative method. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.  相似文献   

12.
In this paper, the H output feedback control problem for a class of stochastic discrete‐time systems with randomly occurring convex‐bounded uncertainties and channel fadings is investigated. A sequence of mutually independent random variables with known probabilistic distributions are utilized to describe the randomness that convex‐bounded uncertainties appear in practical systems. The measurements with channel fadings are given by a stochastic Rice fading model which is regulated by a set of random variables with certain probability density functions. The purpose of this paper is to design an output feedback controller such that the closed‐loop control system is asymptotically stable with a prescribed H performance level. The less conservative results are obtained by employing the stochastic Lyapunov technique. Numerical examples are presented to illustrate effectiveness of the proposed approach.  相似文献   

13.
The problem of quantized H control for networked control systems (NCSs) subject to time‐varying delay and multiple packet dropouts is investigated in this paper. Both the control input and the measurement output signals are quantized before being transmitted and the quantized errors are described as sector bound uncertainties. The measurement channel and the control channel packet dropouts are considered simultaneously, and the stochastic variables satisfying Bernoulli random binary distribution are utilized to model the random multiple packet dropouts. Sufficient conditions for the existence of an observer‐based controller are established to ensure the exponential mean‐square stablility of the closed‐loop system and achieve the optimal H disturbance attenuation level. By using a globally convergent algorithm involving convex optimization, the nonconvex feasibility can be solved successfully. Finally, a numerical example is given to illustrate the effectiveness and applicability of the proposed method.  相似文献   

14.
This paper is concerned with the design of an L1‐induced output‐feedback controller for continuous‐time positive systems with interval uncertainties. A necessary and sufficient condition for stability and an L1‐induced performance of interval positive linear systems is proposed in terms of linear inequalities. Based on this, conditions for the existence of robust static output‐feedback controllers are established and an iterative convex optimization approach is developed to solve the conditions. For special single‐input‐multiple‐output (SIMO) positive systems, the problem of controller synthesis is completely solved with the help of an analytical formula for the L1‐induced norm. An illustrative example is provided to show the effectiveness and applicability of the theoretical results.  相似文献   

15.
In this paper, the controller synthesis problem for fault tolerant control systems (FTCS) with stochastic stability and H2 performance is studied. System faults of random nature are modelled by a Markov chain. Because the real system fault modes are not directly accessible in the context of FTCS, the controller is reconfigured based on the output of a fault detection and identification (FDI) process, which is modelled by another Markov chain. Then state feedback and output feedback control are developed to achieve the mean square stability (MSS) and the H2 performance for both continuous‐time and discrete‐time systems with model uncertainties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This paper is concerned with the problem of H output tracking control for networked control systems (NCSs) with network‐induced delay and packet disordering. Different from the results in existing literature, the controller design in this paper is both delay‐ and packet‐disordering‐dependent. Based on the different cases of consecutive predictions, the networked output tracking system is modeled into a switched system. Moreover, by the corresponding switching‐based Lyapunov functional approach, a linear matrix inequality (LMI)‐based procedure is proposed for designing state‐feedback controllers, which guarantees that the output of the closed‐loop NCSs tracks the output of a given reference model well in the H sense. In addition, the proposed method can be applied variously due to all kinds of prediction numbers of the consecutive disordering packet have been considered, and the designed controller is based on the prediction case in the last transmission interval, which brings about less conservatism. Finally numerical examples and simulations are used to illustrate the effectiveness and validity of the proposed switching‐based method and the delay‐ and packet‐disordering‐dependent H output tracking controller design.  相似文献   

17.
In this paper, the output‐feedback control problem of a vehicle active seat‐suspension system is investigated. A novel optimal design approach for an output‐feedback H controller is proposed. The main objective of the controller is to minimize the seat vertical acceleration to improve vehicle ride comfort. First, the human body and the seat are considered in the modeling of a vehicle active suspension system, which makes the model more precise. Other constraints, such as tire deflection, suspension deflection and actuator saturation, are also considered. Then the output‐feedback control strategy is adopted since some state variables, such as body acceleration and body deflection, are unavailable. A concise and effective approach for an output‐feedback H optimal control is presented. The desired controller is obtained by solving the corresponding linear matrix inequalities (LMIs) and by the calculation of equations proposed in this paper. Finally, a numerical example is presented to show the effectiveness and advantages of the proposed controller design approach.  相似文献   

18.
This paper addresses the problem of designing an Hfuzzy state‐ feedback (SF) plus state‐derivative‐feedback (SDF) control system for photovoltaic (PV) systems based on a linear matrix inequality (LMI) approach. The TS fuzzy controller is designed on the basis of the Takagi‐Sugeno (TS) fuzzy model. The sufficient condition is found such that the system with the fuzzy controller is asymptotically stable and an Hperformance is satisfied. First, a dc/dc buck converter is considered to regulate the power output by controlling state and state‐derivative variables of PV systems. The dynamic model of PV systems is approximated by the TS fuzzy model in the form of nonlinear systems. Then, based on a well‐known Lyapunov functional approach, the synthetic is formulated of an Hfuzzy SF plus SDF control law, which guarantees the L2‐gain from an exogenous input to the regulated output to be less than or equal to some prescribed value. Finally, to show effectiveness, the simulation of the PV systems with the proposed control is assessed by the computer programme. The proposed control method shows good performance for power output and high stability for the PV system.  相似文献   

19.
In this paper, we present a new scheme for designing a H stabilizing controller for discrete‐time Takagi‐Sugeno fuzzy systems with actuator saturation and external disturbances. The weighting‐dependent Lyapunov functions approach is used to design a robust static output‐feedback controller. To address the input saturation problem, both constrained and saturated control input cases are considered. In both cases, stabilization conditions of the fuzzy system are formulated as a convex optimization problem in terms of linear matrix inequalities. Two simulation examples are included to illustrate the effectiveness of the proposed design methods. A comparison with the results given in recent literature on the subject is also presented.  相似文献   

20.
This paper is concerned with the H control problem for a class of systems with repeated scalar nonlinearities and multiple missing measurements. The nonlinear system is described by a discrete‐time state equation involving a repeated scalar nonlinearity, which typically appears in recurrent neural networks. The measurement missing phenomenon is assumed to occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator, where the missing probability for each sensor/actuator is governed by an individual random variable satisfying a certain probabilistic distribution in the interval [0 1]. Attention is focused on the analysis and design of an observer‐based feedback controller such that the closed‐loop control system is stochastically stable and preserves a guaranteed H performance. Sufficient conditions are obtained for the existence of admissible controllers. It is shown that the controller design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. Three examples are provided to illustrate the effectiveness of the developed theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号