首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
以氯化镁和氨水为原料,采用一步法制备氢氧化镁阻燃剂。考察了原料配比、反应温度、反应时间、搅拌转速对氢氧化镁产率、纯度及阻燃率的影响。利用X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)、综合热分析仪(TG-DSC)对制得的样品进行表征。通过单因素实验和正交实验得出优化工艺条件:原料配比(氨水与氯化镁物质的量比)为4∶1,反应温度为35℃,反应时间为60 min,搅拌转速为250 r/min。在此条件下氢氧化镁的产率为92.87%、纯度为96.89%、阻燃率为57.83%。  相似文献   

2.
卤水-氨法纳米氢氧化镁的制备研究   总被引:1,自引:0,他引:1  
在常压下氨法合成纳米氢氧化镁方法的基础上,通过试验,研究了氨水pH值、Mg2+浓度、氨水滴加速度、温度和分散剂用量等因素对纳米氢氧化镁制备的影响。根据XRD和SEM测试结果,提出了制备纳米氢氧化镁的适宜工艺条件:氨水的pH值13.5、氯化镁溶液浓度为0.5mol/L、氨水的加料速度2.0mL/min、反应温度50~60℃、反应时间60min、分散剂用量为MgCl2量的2%和理想溶剂为乙醇和水的混合溶剂,其体积比为1∶2~1∶1。  相似文献   

3.
氨状态对氨法制备氢氧化镁颗粒性质的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
氨法是制备氢氧化镁的主要方法之一,根据氨进入反应体系状态不同分为氨水法和氨气法两种工艺。为了确定氨水与氨气对氢氧化镁颗粒性质的影响,以氯化镁为原料,分别以氨水和氨气为沉淀剂制备氢氧化镁,并利用扫描电镜(SEM)、X射线衍射(XRD)、激光粒度分布仪对产品进行了表征。结果表明:两种沉淀剂制备的氢氧化镁颗粒晶型均随沉淀反应温度的升高趋向完整,颗粒的分散性也随温度的升高得到改善;当反应温度达到75℃以上时,氨气法制备的氢氧化镁呈四方块状(六面体结构),颗粒的规则程度和分散性优于氨水法产品;氨水浓度对氨水法制备的氢氧化镁颗粒粒度及形貌也有较大影响,随氨水浓度的升高,产品粒度及分散性趋向于氨气法产品。本文研究可为氢氧化镁制备中氨法的选择及应用提供参考。  相似文献   

4.
以多重乳状体系相对体积(φ)为衡量指标,探讨了乳化剂组合及配比、第一步乳化温度、搅拌速度、搅拌时间以及第二步乳化温度、搅拌速度、搅拌时间对制备稳定多重乳状体系的影响。结果表明最佳的乳化剂组合及配比为亲油性乳化剂Ⅰ∶山梨坦硬脂酸酯和鲸蜡基PEG/PPG-10/1聚二甲基硅氧烷,用量均为2.5%(质量分数,下同);亲水性乳化剂Ⅱ∶聚山梨醇酯-60和硬脂醇聚醚-21,用量均为0.5%。最佳制备工艺为:第一步乳化温度为70℃,搅拌速度3 000 r/min,搅拌时间25 min;第二步乳化温度45℃,搅拌速度600 r/min,搅拌时间25 min。  相似文献   

5.
陈晓刚  陈忻  周子凡  廖成甜 《广东化工》2012,39(17):32-33,66
以六水氯化镁为原料,利用氨水和氢氧化钠混合溶液为沉淀剂,采用直接沉淀法制备纳米氢氧化镁。其最佳反应条件为温度60℃,反应时间90 min,氯化镁浓度0.5 mol/L,体积比为1∶1乙醇和水为混合溶剂,表面活性剂聚乙二醇-400用量为六水氯化镁质量的3%,烘干温度为80℃。实验得到粒径分布窄、分散性好的氢氧化镁粉体,对纳米氢氧化镁的工业化生产有重要意义。  相似文献   

6.
苏明阳  徐竟一 《当代化工》2015,(3):467-469,472
纳米氢氧化镁是一种具有广泛用途的新型无机材料,可作为绿色阻燃剂和用于制备纳米氧化镁等。通过直接沉淀法制备纳米氢氧化镁是最具有工业化前景的方法。以氨水为衬底溶液,氯化镁和氢氧化钠溶液同时滴加的双注-衬底工艺制备纳米氢氧化镁,重点研究了分散剂的类型、用量及复合使用对纳米氢氧化镁制备的影响。结果表明:较理想的分散剂是聚乙二醇6000(PEG6000)和硬脂酸钠,复合使用PEG6000与十二烷基苯磺酸钠(SDBS),效果更好。PEG6000和SDBS的最佳用量分别为氢氧化镁理论产量的3%及1.5%。在该条件下,产品的纯度约为97%,产品主要为片状,分散性较好,平均粒径约为70 nm。  相似文献   

7.
王宝和  景殿策  李群 《河南化工》2013,30(11):30-32
以六水氯化镁和轻质氧化镁为原料,制备出碱式氯化镁纳米棒;再以碱式氯化镁纳米棒为前驱物,采用沉淀转化法制备出前驱物氢氧化镁纳米棒;再通过前驱物热分解法得到直径150~250 nm,长6~10μm的氧化镁单晶纳米棒。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和选区电子衍射(SAED)对产物进行表征与分析,研究了煅烧条件对氧化镁纳米棒形貌的影响,得到了氧化镁纳米棒的最佳制备工艺条件为:煅烧温度400℃,煅烧时间1 h,升温速率3℃/min。  相似文献   

8.
超细氢氧化镁粉体的制备研究   总被引:4,自引:0,他引:4  
以氨水为沉淀剂与氯化镁反应,直接沉淀法制备氢氧化镁,研究反应温度、反应时间、Mg2+的初始浓度、原料配比对产品粒径与形貌的影响,产品使用粒度分析仪、XRD、红外与透射电镜表征,在最佳反应条件(温度35℃,时间30 min,Mg2+浓度1.0 mol/L,摩尔比1∶6)下,制备得到片状,粒径150 nm超细氢氧化镁粉体。  相似文献   

9.
以磷矿除镁后的废液与氨水为原料,在撞击流反应器中,采用氨法二步沉淀,探索了回收镁元素的工艺过程,制取了高纯度的氢氧化镁粒子,以聚乙二醇(PEG)6000为分散剂,制备出分散性良好的纳米氢氧化镁粒子。探讨了有关因素对产品中氢氧化镁含量和氧化镁回收率的影响,确定了适宜的工艺条件:除镁废液中氧化镁质量浓度为0.008g/mL,第一次中和反应终点pH值为9.5,第二次中和反应终点pH值的范围为10.20~10.30,第二次中和反应时间为45min,分散剂PEG6000的用量为纳米氢氧化镁理论产量的3%,采用三次沉降方式洗涤产品。制备的纳米氢氧化镁粒子粒径大小在40nm左右,产品中氢氧化镁质量分数为99.27%,氧化镁回收率为83.07%。  相似文献   

10.
以碱式氯化镁纳米棒为原料,采用沉淀转化法制备出氢氧化镁纳米棒滤饼;在不同干燥介质温度和不同物料床层厚度下,通过干燥动力学实验,得到了干燥速率曲线和干燥温度曲线。研究结果表明:在恒定干燥条件下,随着干燥介质温度的提高(或物料床层厚度的降低),氢氧化镁纳米棒的干燥速率加快,干燥时间缩短。当干燥介质温度较低(或物料床层厚度较大)时,对于某一干燥介质温度(或物料床层厚度)下的一条干燥速率曲线,氢氧化镁纳米棒的干燥过程可以分为升速、恒速、第一降速和第二降速四个干燥阶段。随着干燥介质温度的提高(或物料床层厚度的降低),干燥速率曲线中的恒速干燥阶段范围逐渐变小,直至消失。整个干燥速率曲线图可以分成为升速干燥区、恒速干燥区、第一降速干燥区和第二降速干燥区。  相似文献   

11.
MAP沉淀法回收去除尿液中氮磷的影响因素分析   总被引:1,自引:0,他引:1  
王智  傅金祥  曹威 《辽宁化工》2009,38(11):822-824
介绍了MAP沉淀法的反应机理以及用于回收去除尿液中氮磷的可行性,分析了在反应过程中pH值、反应物配比、反应温度、反应时间、沉淀时间以及搅拌速度等影响因素,得出最佳反应条件为:pH在10左右;反应物摩尔配比为n(Mg2+)∶n(NH4+)∶n(PO43-)=1.2∶1∶1.06;反应时间为20 min;反应温度为25~30℃,一般采用室温;搅拌速度为120 r/min。并对其目前存在的问题进行了简述。  相似文献   

12.
以盐湖产不同粒径轻烧氧化镁为原料,通过水化水热法制备六角片状氢氧化镁。考察了不同的反应温度、反应时间、搅拌速度和固液比对氧化镁水化率、制得氢氧化镁形貌、粒径的影响。采用X射线衍射仪、扫描电子显微镜、激光粒度仪等对所制得的氢氧化镁颗粒的物相、形貌和粒度进行了分析,同时把不同原料所得氢氧化镁用在聚乙烯(PE)中检测其阻燃性能。结果表明通过控制反应温度、反应时间、搅拌速度和固液比,氧化镁原粉的水化率可以达到95%,氧化镁细磨粉的水化率可达到100%,得到的氢氧化镁均呈现六角片状,但粒径尺寸存在差异。用在PE中,细粒径的氢氧化镁分散性更好,阻燃效果更明显。  相似文献   

13.
以尿素为沉淀剂,硝酸钇为钇源,十六烷基三甲基溴化铵为分散剂,采用均相沉淀法制备球形纳米氧化钇粉体,研究了反应物浓度比、表面活性剂用量、反应时间、搅拌转速、反应温度对氧化钇形貌及粒径的影响。通过激光粒度分析、X射线衍射(XRD)分析、扫描电镜(SEM)分析、傅里叶红外光谱(FTIR)分析等手段对样品进行表征。结果表明,反应物浓度比、反应时间、搅拌转速、反应温度会影响粉体的尺寸,适量CTAB的加入可显著降低氧化钇的粒径;在最佳工艺条件下,可制得粒径大小为110~130 nm的球形氧化钇粉体。  相似文献   

14.
以轻烧菱镁矿获得的氧化镁为原料,在温度为160℃、搅拌速度为400 r/min的条件下反应,研究无水硫酸镁对氧化镁水热产物的影响.当MgO与MgSO4的摩尔比为10:1时,反应6 h的水热产物是纯度高、结晶度好的六方片状氢氧化镁;当MgO与MgSO4的摩尔比为2.5:1时,前3 h水热产物是六方片状氢氧化镁,随后出现碱式硫酸镁晶须并且其生成量越来越多;当MgO与MgSO4的摩尔比为10:7时,前50 min水热产物是六方片状氢氧化镁,然后出现碱式硫酸镁晶须,直至6 h全部生成直径约为300 nm、表面光滑的碱式硫酸镁晶须.在此过程中,小颗粒氢氧化镁出现溶解现象,形成碱式硫酸镁晶核,大颗粒氢氧化镁与溶液中的MgSO4、H2O生成大量MgSO4·5Mg(OH)2·3H2O(153型碱式硫酸镁),在其生长方向上生长基元Mg-O6进入由于螺旋位错形成的二维台阶的凹陷处促使其沿位错方向稳定生长为晶须.无水硫酸镁的浓度越大,生成碱式硫酸镁晶须越多,生成碱式硫酸镁晶须所用时间越短.  相似文献   

15.
工业硫酸镁制备高纯氧化镁的合成研究   总被引:2,自引:0,他引:2  
以工业硫酸镁和氢氧化钠为原料,合成氢氧化镁前驱物经煅烧制备高纯氧化镁。研究了净化工业硫酸镁溶液时的pH值大小以及沉镁时氢氧化钠浓度对产品纯度的影响。在确定了精制硫酸镁与氢氧化钠摩尔计量比、陈化时间、煅烧时间的条件下,通过单因素实验和正交试验确定了反应的较佳工艺条件为:硫酸镁的浓度2mol/L,反应温度40℃,反应时间35min,煅烧温度900℃,产物氧化镁的纯度达到99%以上。采用x射线衍射仪和透射电镜对样品进行表征,结果表明:样品粒子平均粒径约为40nm,形貌为类球形,分布较均匀。  相似文献   

16.
以氨水为沉淀剂与硫酸镁反应,直接沉淀法制备氢氧化镁,研究原料浓度、反应温度、反应时间、表面活性剂对产品粒径与形貌的影响,采用单因素实验确定最佳反应条件(Mg2+浓度1.5 mol/L,OH-浓度7 mol/L,水/乙醇比为5∶1,SDBS+明胶质量分数1.5%,温度70℃,时间40 min)下,得到平均粒径约为2.5μm的近似球形的氢氧化镁颗粒。通过XRD,SEM,FT-IR等手段表征了产品的属性及形貌特征,结果表明产品粒子呈球形,粒度分布均匀,分散性好,晶形好。  相似文献   

17.
以硫辛酸厂含铝废水中的Al3+为原料,采用结晶法制备铵明矾,研究了时间、NH4+/Al3+摩尔比、SO42-/Al3+摩尔比、温度、搅拌速度对废水中铝去除率和铵明矾产量的影响,对所制铵明矾与商品铵明矾进行比较. 结果表明,两者具有几乎相同的晶体结构、形貌和化学组成,所得产品符合同类工业产品标准. 结晶法用硫辛酸厂含铝废水制备铵明矾的适宜条件为:反应时间8 h,NH4+/Al3+ 1.40,SO42-/Al3+ 2.90,温度5~15℃,搅拌速度35~55 r/min. 宏观反应动力学表明,在晶体生长期,Al3+在边界层扩散传质为反应控制步骤,液相主体Al3+浓度C随时间t的变化关系符合方程C=(C0-Ci)e-kt+Ci. 当搅拌速度较低时,铵明矾晶体平均粒径大,分布宽;搅拌速度增加,晶体平均粒径减小,粒径分布变窄.  相似文献   

18.
采用商用的计算流体动力学(CFD)计算软件Fluent对SiC颗粒增强镁基复合材料搅拌过程进行动态模拟,研究了不同搅拌速度、搅拌时间及温度对于SiCp/AZ91(SiC颗粒增强镁合金AZ91)组织的影响。研究结果表明,搅拌时间和搅拌速度对于SiCp/AZ91材料成品质量有显著的影响,搅拌速度的增加有助于SiC颗粒的分散,但速度过快导致液面起伏较大,大量气体进入镁液中,最终使成品中气孔较多。而在搅拌时间方面,当时间较短时,SiC颗粒未充分与合金液混合,因此出现大片SiC颗粒团聚现象。随着搅拌时间的延长,团聚的颗粒逐渐向镁合金液中均匀分散,当搅拌时间为15 min时,SiC固相颗粒与镁合金液所组成的混合相最为均匀,此时继续延长搅拌时间,其固相颗粒的宏观均匀性并未发生进一步变化。根据模拟和试验的结果得出最佳的搅拌时间为15 min,搅拌速度为300 r/min。  相似文献   

19.
以苦卤水、烧碱为原料,采用直接沉淀法在表面活性剂的辅助下制备出纳米氢氧化镁粉体。实验研究了反应温度、反应物物质的量比、表面活性剂、不同干燥方式和滴加方式等对所得粉体粒度的影响,通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)对粉体进行表征,用差热-热重分析仪(TG-DTA)分析了产物的热稳定性,并用激光粒度测试仪测试了产物的粒度大小及其分布情况。实验表明:在合适的反应温度及物质的量比下,用PEG200作为表面活性剂、正丁醇共沸蒸馏干燥制得的粉体为流动性较好且厚度约为10 nm的片状纳米氢氧化镁粉体。  相似文献   

20.
为解决超细氢氧化镁颗粒细、易团聚导致的难过滤问题,本文考察了添加剂种类对含超细氢氧化镁浆料过滤性能的影响,系统研究了阳离子型聚丙烯酰胺加入方式、添加剂用量比、反应温度、反应时间和搅拌速率等因素对过滤速率的影响,采用X射线衍射仪(XRD)、热场发射扫描电子显微镜(SEM)对反应过程中得到的氢氧化镁晶体结构、形貌、粒度等进行表征分析,结合傅里叶红外光谱仪(FTIR)探究了聚丙烯酰胺分子与氢氧化镁晶体的结合机制,总结了阳离子型聚丙烯酰胺提高含超细氢氧化镁浆料过滤性能的机理。结果表明:阳离子聚丙烯酰胺的添加量为理论氢氧化镁质量的0.7%,反应温度60℃,搅拌速率250r/min,超细氢氧化镁浆料的过滤速率最大为545mL/(m2·s),体系黏度最低为8.64mPa·s,氢氧化镁的平均粒径为138nm。过滤性能提高的机理为:阳离子聚丙烯酰胺中的酰胺基团与氢氧化镁分子中的羟基通过吸附架桥方式结合形成长链分子,使氢氧化镁颗粒之间分散性提高,减少相互间的团聚,提高整体过滤速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号