首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从磷-氮系阻燃剂、阻燃剂类型、协效阻燃剂三个方面制备和研究了高冲击强度、高阻燃性能的玻纤增强阻燃尼龙6(PA6)复合材料。结果表明:三种方法都可以达到阻燃V-0;在溴-锑阻燃基础上,添加磷-氮系阻燃剂,可以提高玻纤增强阻燃PA6的阻燃性,但是会降低力学性能;红磷阻燃制备的复合材料的冲击性能最好;溴-锑阻燃制备的复合材料的拉伸强度和弯曲强度最高,冲击性能最低;有机次膦酸盐制备的复合材料的拉伸强度和弯曲强度最低,冲击性能适中;协效阻燃剂可以降低溴-锑的含量,降低材料成本,阻燃性能保持不变,拉伸强度和弯曲强度略有下降,冲击性能略有上升。得出如下结论:红磷阻燃剂质量分数是6%,以及F2400∶三氧化二锑∶协效阻燃剂质量分数比=17∶5∶2时,玻纤增强阻燃尼龙6复合材料的冲击性能最好,阻燃性达到UL94(1.6 mm)V-0。  相似文献   

2.
基于生物基聚酰胺(PA5T)、低熔点聚酰胺树脂、非晶聚酰胺树脂、玻纤、阻燃剂、交联剂、抗氧剂、润滑剂等,通过熔融浸渍法制备了一系列长玻纤增强耐高温聚酰胺材料,并分析其力学性能、热性能、阻燃性能。对比了长、短玻纤增强耐高温聚酰胺材料的拉伸强度、弯曲模量、缺口冲击性能、热变形温度、蠕变性能和疲劳性能的差异。结果表明:低熔点聚酰胺和非晶聚酰胺可使材料的力学性能得到提升,同时在一定程度上降低其热变形温度;交联剂的加入和注塑件的辐照处理共同作用可显著提升材料的耐热性、阻燃性能、疲劳性能和蠕变性能;长玻纤增强耐高温聚酰胺材料的低温冲击性能、热氧老化拉伸强度保持率、耐疲劳和耐蠕变性能优势明显。  相似文献   

3.
利用双螺杆挤出机制备了玻纤阻燃增强回收聚酰胺6(PA6)系列复合材料,探讨了红磷母粒(P)、氢氧化镁[Mg(OH)2]、三聚氰胺尿酸盐(MCA)、硼酸锌(ZnBO3)、增韧剂乙烯辛烯共聚物接枝马来酸酐(POE-g-MAH)对阻燃增强回收PA6力学性能及灼热丝温度的影响,采用力学测试方法、灼热丝试验仪研究了回收PA6复合材料的力学性能和灼热丝温度。结果表明:在阻燃增强回收PA6体系中,用P、MCA复配效果最好,当质量比为2/1的P/MCA和POE-g-MAH加入量(质量分数)分别为2%和5%时,材料的拉伸强度为123.6 MPa,缺口冲击强度为10 kJ/m2,1.6 mm阻燃等级为V-0,灼热丝温度达到810℃,满足电子电气对材料高灼热丝温度的要求。  相似文献   

4.
采用自制的无卤阻燃剂(IFR)对30%玻纤增强尼龙6复合材料进行阻燃改性,研究了IFR的不同加入量对复合材料阻燃性能、力学性能以及热性能的影响。结果表明:当IFR加入量为25%时.阻燃复合材料的极限氧指数(LOI)达到31,阻燃级别为V-0级,而拉伸强度为78.86MPa,冲击强度为5.06kJ/m^2,材料综合性能比较优异。热重分析(TGA)数据表明,IFR的加入,改变了复合材料的热分解行为,改善了成炭效果。  相似文献   

5.
固定微胶囊化红磷(MRP)用量为11份,研究了不同尼龙6(PA6)含量对高密度聚乙烯(HDPE)/PA6/MRP合金阻燃性能、力学性能的影响,并用热重分析技术探讨了不同PA6含量时合金材料的残炭率、热降解起始温度。结果表明,当PA6含量为50份时,合金的阻燃性能、冲击强度及拉伸强度产生转变拐点,此时材料的冲击强度及残炭率最差。  相似文献   

6.
在尼龙(PA)10T/1010中加入玻纤制备玻纤增强PA10T/1010复合材料,通过力学性能测试、X射线衍射测试、差示扫描量热分析、热变形温度测试、热重分析等手段对PA10T/1010复合材料进行表征,考察了玻纤含量对PA10T/1010复合材料力学性能、结晶性能、热稳定性等的影响。结果表明,随着玻纤含量的增加,PA10T/1010复合材料的拉伸强度、弯曲强度、冲击强度等力学性能得到明显改善,热稳定性明显提高,但结晶性能没有改变。玻纤的加入使PA10T/1010的用途更加广泛,可用于汽车行业、电子行业以及航空航天领域。  相似文献   

7.
为提高三聚氰胺聚磷酸盐(MPP)和二乙基次膦酸盐(OP)协效阻燃玻纤(GF)增强尼龙66(PA66)的综合性能,引入少量的无机阻燃剂硼酸锌(ZB)作为协效剂,系统研究了不同添加量的ZB对阻燃材料的阻燃性能、热稳定性、力学性能和白度的影响。结果表明,当MPP和OP的总添加量为15%,复配0.5%的ZB时,阻燃GF增强PA66的垂直燃烧阻燃等级达到UL94 V–0级,且热释放总量由MPP/OP体系的15.4 k J/g降为13.7 k J/g;ZB的引入促进了连续、致密炭层的形成,增强了凝聚相阻燃;ZB增强了阻燃材料的热稳定性,ZB复配量为1.0%的阻燃材料的初始降解温度提高到了301℃,有效避免了加工过程中的降解;当ZB添加量为1.0%时,阻燃材料的拉伸强度和缺口冲击强度分别为100.9 MPa和4.22 k J/m~2,均优于未添加阻燃剂的纯GF增强PA66;同时,样品的白度得到了明显提升,有利于阻燃GF增强PA66的工业化应用。  相似文献   

8.
长玻纤增强尼龙6复合材料研究   总被引:17,自引:3,他引:17  
采用熔体浸渍工艺制备了长玻纤增强尼龙6预浸料,研究了玻纤初始长度、玻纤含量、增韧剂对复合材料性能的影响,以及玻纤强度、树脂基体对复合材料性能的影响。试验结果表明,在玻纤含量32.2%,切粒长度为10mm时,复合材料的拉伸强度为208.4MPa,弯曲强度为269.5MPa,弯曲弹性模量为9.34GPa,缺口冲击强度为29kJ/m^2,冲击强度为63.4kJ/m^2,综合力学性能明显优于短玻纤增强PA6复合材料。  相似文献   

9.
增强阻燃PBT的性能研究   总被引:1,自引:1,他引:0  
采用硅烷偶联剂对玻纤进行处理性,探讨了螺杆转速和螺杆组合对阻燃增强聚对苯二甲酸丁二醇酯(PBT)力学性能的影响;并研究了不同玻纤、PBT、阻燃剂对增强阻燃PBT抗水解性能的影响。结果表明:处理玻纤提高了玻纤和基体界面的相互作用,复合材料的拉伸、弯曲和缺口冲击强度分别提高了10.6%、13%和19.6%;主机螺杆转速过高或螺杆组合的剪切过强都会使玻纤长度低于0.4 mm而降低增强作用,导致材料的力学性能下降。水煮后增强阻燃PBT力学性能的下降幅度主要取决于玻纤和树脂之间的界面,玻纤ECR5303A-2200增强阻燃的PBT的拉伸、弯曲和缺口冲击强度的保持率分别为水煮前的96%、88%和75%;其次为阻燃剂,树脂基体影响最小。加入自制增韧剂可显著降低增强阻燃PBT的端羧基浓度,从而有效提高其抗水解性。  相似文献   

10.
《塑料》2017,(4)
通过对玻纤增强SAN树脂(SAN/GF)的力学性能分析,研究了影响玻纤增强SAN材料的因素。结果表明,添加SMA相容剂有助于增加SAN树脂与玻纤的界面结合强度,提高材料的力学性能,相容剂含量为3%时,增强材料的拉伸强度和弯曲强度分别达到117.2和140.2 MPa,比未加相容剂时,强度分别增加22.8%和12.8%。适量润滑剂的添加对提高材料力学性能具有正面效应,根据实验研究,润滑剂用量在0.2%时,玻纤增强材料性能较好。单丝直径为13和14μm的2种玻纤的增强效果差别不大,制备的增强材料的拉伸强度都在115 MPa以上,弯曲强度大于135 MPa。主机螺杆转速对玻纤增强SAN材料的力学性能影响不大。玻纤含量在20%时,制备的玻纤增强材料的冲击性能最好,达到5.7 kJ/m~2。  相似文献   

11.
采用聚苯醚(PPE)与红磷母粒(MRP)复配阻燃,并使用玻璃纤维进行增强,制备了无卤阻燃玻纤增强尼龙46(PA46)复合材料。研究了不同配比PPE/MRP及其用量对阻燃玻纤增强PA46复合材料性能的影响。结果表明,当PPE/MRP质量分数为12%且质量比=1/1时,能够在添加较少量的MRP的情况下得到较好的阻燃效果,达到UL94 V-0级(1.6 mm)。热失重分析(TG)表明材料的残炭率与其阻燃性能有很好的对应关系;残炭率低的试样,其阻燃性能也低,只达到V-1级;而残炭率高的试样,阻燃性能可达到V-0级。随着PPE添加量的逐渐增加,玻纤增强阻燃PA46的各项力学性能都有不同程度的提高;当PPE和MRP质量分数均为6%时,玻纤增强阻燃PA46垂直燃烧后形成的炭层平整性和致密性都较好,炭层表面孔隙较少,起到较好的阻燃效果,试样的力学性能和热变形温度都达到最佳,起到了很好的协同效应。  相似文献   

12.
溶剂法合成MPP及其阻燃玻纤增强尼龙66的研究   总被引:1,自引:1,他引:0  
以强极性有机胺为反应介质,通过三聚氰胺与多聚磷酸的成盐反应一步合成磷氮复合型阻燃剂三聚氰胺聚磷酸盐(MPP)。考察了反应温度、反应时间和加料方式等对MPP阻燃玻纤增强尼龙66性能的影响,发现在MPP质量分数为25%时所得材料的阻燃性能达到UL94(1.6mm)V-0级,拉伸强度和缺口冲击强度分别达120MPa和6.7kJ/m2。研究了体系的阻燃机理,为解决玻纤增强尼龙材料的玻纤“烛芯效应”及阻燃材料难以兼具阻燃性能和力学性能的难题提供了新方法。  相似文献   

13.
使用短切纱玻璃纤维和尼龙66(PA66),采用侧方喂料方式添加并熔融挤出制备高玻纤含量的增强PA66复合材料。对复合材料的力学性能进行测试,观察各玻纤含量材料注塑成型样板表面状况,利用扫描电子显微镜(SEM)对使用30%、50%玻纤增强PA66复合材料的冲击断面扫描,采用示差扫描量热(DSC)法测试使用45%、50%玻纤增强PA66复合材料的熔融峰。结果表明,50%玻纤增强尼龙66材料的拉伸强度、弯曲强度、弯曲模量、冲击强度均最高,SEM扫描显示50%玻纤含量材料纤维结合效果良好,但样板表面光洁度相对最差,材料熔融峰较45%玻纤含量PA66增加3.18℃。制得的50%高玻纤含量PA66复合材料可以应用于高耐热、高强度及对表面光洁度要求不高的结构部件。  相似文献   

14.
针对三聚氰胺氰尿酸盐(MCA)粉体对尼龙(PA)进行阻燃改性时,MCA分散性差,材料阻燃性能不稳定的问题,运用特殊的包覆工艺成功制得了PA基MCA母粒。将制得的MCA母粒及MCA粉体分别与PA6或PA66共混挤出,制得阻燃PA材料。对比分析了MCA母粒及MCA粉体阻燃PA6或PA66的垂直燃烧性能和力学性能。结果表明,与MCA粉体相比,MCA母粒可在MCA含量较低的情况下使厚度为0.8 mm及1.6 mm的阻燃PA6或PA66试样的垂直燃烧等级达到V–0级。MCA母粒及粉体对阻燃PA6的弯曲强度和PA66的拉伸强度影响很小,MCA母粒阻燃PA6的拉伸强度较粉体阻燃的高,而阻燃PA66的弯曲强度低;MCA母粒使阻燃PA的缺口冲击强度降低,而MCA粉体对PA的缺口冲击强度影响较小,当MCA含量较低时,MCA母粒阻燃PA的缺口冲击强度明显高于MCA粉体阻燃的PA。制备的MCA阻燃母粒对PA的阻燃效果不受黑色母料的影响,且具有较好的阻燃稳定性。  相似文献   

15.
《塑料科技》2016,(10):49-52
采用熔融共混法制备了线型酚醛树脂(LPF)改性的玻纤增强聚酰胺66(PA66/GF)复合材料,研究了LPF对PA66/GF复合材料吸水性、力学性能以及耐湿性的影响。结果表明:随着LPF用量的增加,改性增强PA66复合材料PA66/GF/LPF的吸水率明显降低;同时复合材料的拉伸强度略有提升,但缺口冲击强度则有所下降。另外同改性前(PA66/GF)相比,改性复合材料(PA66/GF/LPF)的耐湿性明显提升,调湿处理后材料的力学性能基本保持稳定,其中当LPF用量为4%且调湿处理10天后,复合材料的拉伸强度保持率达到82.2%,同时冲击强度变化率仅为18.6%。  相似文献   

16.
欧育湘  冯波  冯建祺  李滨海 《塑料》2005,34(5):29-31
PA46是一种耐高温聚酰胺,可用于制造耐温性、阻燃性和机械性能要求十分严格的电子电气部件。制得了阻燃玻纤增强PA46,阻燃性达到UL94V-0级(1.6mm),热变形温度(1.82MPa)267℃。与未阻燃的同类材料相比,主要机械性能:拉伸强度及模量、弯曲强度及模量、缺口冲击强度几乎保持不变。  相似文献   

17.
《塑料科技》2016,(7):42-46
将次磷酸铝(AHP)和环氧硅树脂(ESR)复配后添加到聚酰胺6(PA6)中制备了阻燃PA6材料。通过极限氧指数(LOI)和垂直燃烧(UL 94)测试研究了该阻燃PA6材料的阻燃性能,利用扫描电子显微镜(SEM)观察了阻燃PA6的残炭形貌,同时还通过拉伸、弯曲和冲击强度测试考察了阻燃PA6的力学性能。结果表明:当AHP用量为24%时,阻燃PA6材料通过了UL 94V-0测试,其LOI值达到25.6%;而以质量比为95:5的复配阻燃剂AHP/ESR对PA6进行阻燃,且阻燃剂用量仅为18%时,阻燃PA6材料通过UL 94V-0测试,其LOI值达到25.8%,这说明AHP与ESR对PA6具有良好的协效阻燃作用。与PA6/AHP复合材料相比,PA6/AHP/ESR复合材料的力学性能有所改善,这说明ESR的加入可提高材料的力学性能。此外,SEM测试结果显示,ESR的加入有助于阻燃PA6材料形成均一、致密的炭层,对下层的材料起到了很好的保护作用,从而提高了材料的阻燃性能。  相似文献   

18.
采用熔融共混法制备了玻纤(GF)/尼龙6(PA6)复合材料,考察了GF含量对GF/PA6复合材料力学性能的影响。实验结果表明,在玻纤含量较低时,拉伸强度、弯曲强度和冲击强度伴随着玻纤含量的增加而提高。当GF质量分数为30%时,复合材料的力学性能和熔体流动速率处于最佳平衡状态。在GF增强的基础上,采用滑石粉(Talc)与GF复合增强体系,制备了系列增强尼龙复合材料。考察了Talc含量对PA6/Talc/GF复合材料力学性能的影响,Talc含量为5%时,复合材料的力学性能最好,片层状Talc与纤维状GF发挥了良好的协同作用。  相似文献   

19.
针对现有商品化三聚氰胺氰尿酸(MCA)团聚颗粒结构致密、硬度大、在树脂中难分散,以及其阻燃的尼龙(PA)66阻燃和力学性能劣化等问题,采用自行合成的高分散型MCA(FS–MCA)阻燃PA66,借助水基分散实验和扫描电子显微镜研究了FS–MCA颗粒形态、分散行为及分散机理,通过微型燃烧量热分析、垂直燃烧测试及拉伸和冲击性能测试研究了MCA和FS–MCA阻燃PA66材料的燃烧行为、阻燃性能及力学性能。结果表明,与现有商品化MCA相比,FS–MCA具有颗粒间结合力小,团聚颗粒结构疏松的特点,可在PA66树脂基体中实现亚微米尺度的超细化分散;当其质量分数为10%时,FS–MCA阻燃PA66材料的阻燃级别达到UL 94 V–0级(1.6 mm),且其拉伸强度、断裂伸长率和缺口冲击强度分别达到80.6 MPa,11.4%和7.9 kJ/m2,其阻燃和力学性能均明显优于现有商品化MCA阻燃PA66体系。  相似文献   

20.
采用不同玻纤质量分数的常规玻纤、扁平玻纤增强PA66塑料,对材料的力学性能、熔融指数、翘曲变形量等进行了研究。结果表明:扁平玻纤增强的PA66塑料具有优异的缺口冲击强度;玻纤质量分数超过60%,常规玻纤增强PA66塑料的拉伸强度开始下降;扁平玻纤增强PA66塑料的翘曲变形量随着扁平比的增加而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号