首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
采用高温固相法合成了锂离子电池正极材料LiFePO4及改性的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料。采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌。结果表明:改性后的LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C材料与LiFePO4一样均为单一的橄榄石结构。以20 mA/g电流密度充放电,LiFe0.9Ni0.1PO4的首次放电容量为140 mA.h/g,较LiFePO4增加了12%;而复合掺杂得到的含碳量为2.8%的LiFe0.9Ni0.1PO4/C材料,首次放电容量达162 mA.h/g,充放电循环30次后放电电容量仍为147 mA.h/g,容量衰减仅为9%。当充放电电流密度提高到80 mA/g时,LiFePO4、LiFe0.9Ni0.1PO4和LiFe0.9Ni0.1PO4/C的放电容量分别为86、114和140 mA.h/g。改性后的LiFe0.9Ni0.1PO4/C的电化学性能得到了较大的改善。  相似文献   

2.
利用炭热还原法合成了橄榄石型LiFe1-xNixPO4/C (x=0.0,0.1,0.3,0.5) 正极材料,并系统研究了Ni2+替代对材料电化学性能的影响。充放电循环、循环伏安和交流阻抗测试,结果表明Ni2+替代部分Fe2+可以显著改善LiFePO4材料的电化学性能。在0.2 C (1 C=170.0 mA·g-1)电流密度下,LiFe0.9Ni0.1PO4/C的放电比容量达到160 mAh·g-1。LiFe1-xNixPO4/C电化学性能的改善归因于材料电导率的提高和电荷传输电阻的降低。利用第一性原理对LiFe1-xNixPO4/C的电子结构进行了研究,结果表明Ni2+的铁位替代能够提高体系的电子电导性。LiFe0.875Ni0.125PO4的结构最稳定,带隙最小,导电性能最好  相似文献   

3.
采用高温固相法合成Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C正极材料。通过X射线衍射(XRD)、扫描电镜(SEM)、电化学阻抗谱(EIS)和电化学测试技术等研究材料的结构、形貌和电化学性能。结果表明:Ni2+和Mn2+共掺杂后的LiFe0.95Ni0.02Mn0.03PO4/C材料仍然具有LiFePO4/C橄榄石型晶体结构,且掺杂后材料的放电比容量和循环性能都得到显著改善。在0.1C和1C下放电时,未掺杂LiFePO4/C的首次放电比容量仅分别为153和140 mA.h/g,而Ni2+、Mn2+共掺杂的LiFe0.95Ni0.02Mn0.03PO4/C材料首次放电比容量分别为165和145 mA.h/g,且在1C下循环100次后容量保持率仍然为97.6%。  相似文献   

4.
Co掺杂LiFePO4/C的共沉淀——微波合成及电化学性能   总被引:1,自引:1,他引:0  
采用共沉淀-微波法制备了Co掺杂的锂离子电池正极材料LiFe1-xCoxPO4/C(x=0.00、0.01、0.03、0.05、0.07、0.09).研究了微波时间、柠檬酸量、掺Co量等因素对材料结构、形貌和电性能的影响.XRD、SEM和电化学测试表明:该方法制备的样品为橄榄石型非晶结构,粒径尺寸为0.5~5 μm,颗粒分布比较均匀.微波15 min、柠檬酸量为20wt%时,LiFePO4/C电化学性能最优,0.1C倍率放电可达124 mA·h/g,第20次循环的比容量为117mA·h/g.掺杂Co在很大程度上可以提高LiFePO4/C的电化学性能,当Co含量为5wt%时,LiFe0.95Co0.05PO4/C的比容量为最大值,0.1C倍率放电可达136 mA·h/g,第20次循环的比容量为125 mA· h/g,容量保持率为91.9%.  相似文献   

5.
用固相法合成LiFe1-xYxPO4 (x=0, 0.01, 0.02, 0.03, 0.04)锂离子电池正极材料,采用X射线衍射仪、扫描电子显微镜、粉末比电阻法和充放电性能测试表征材料的晶体结构、微观形貌、电子电导率和电化学性能。结果表明,少量的钇掺杂并未改变材料的晶体结构,但改善了材料的微观结构,提高其电子电导率,改善可逆容量和电化学性能。在10 mA/g的电流密度下,LiFe0.97Y0.03PO4首次放电容量可达146.54 mAh/g。  相似文献   

6.
采用干法高能球磨-一步固相反应合成LiFe1-xMgxPO4(x=0,0.01,0.05,0.10和0.20)正极材料。利用x射线衍射仪、扫描电镜和能量色散谱表征样品的晶体结构、形貌和Mg元素分布,并研究Mg掺杂量对LiFePO4材料电化学性能的影响。结果表明,制备的LiFe1-xMgxPO4(0≤x≤0.10)为纯相,且LiFe1-xMgxPO4(x=0,0.01,0.05,0.10和0.20)晶粒尺寸随掺杂量的增大而增大。LiFe1-xMgxPO4的放电容量最佳,室温0.1c倍率下充放电其首次放电容量为150.8mA·h/g,即使在1C倍率下放电时也有129.9mA·h/g的容量,循环性能较好。  相似文献   

7.
采用X射线衍射(XRD)、透射电镜(TEM)和电化学方法,研究Ni2+掺杂对正极材料Li3V2(PO4)3的结构、形貌和电化学性能的影响。结果表明:掺杂适量的Ni2+不会改变Li3V2(PO4)3的单斜晶系结构,但可提高材料的电导率,抑制电池在充放电过程的极化。在室温下,Li3(Ni0.05V0.95)2(PO4)3以0.1C倍率放电的初始比容量为115mA.h/g,放电倍率从0.1C增加到0.4C循环60次后,比容量衰减率仅为2.7%,而未掺杂原样Li3V2(PO4)3的初始比容量为129 mA.h/g,60次循环后比容量衰减率约为30.3%;当放电倍率增至1C时,80次循环后,Li3(Ni0.05V0.95)2(PO4)3比容量为99.8 mA.h/g,而原样的比容量为84.1 mA.h/g;当放电倍率增至5C时,循环120次后,Li3(Ni0.05V0.95)2(PO4)3比容量为67.7 mA.h/g,而原样的比容量降为0。循环伏安和交流阻抗测试表明,Li3(Ni0.05V0.95)2(PO4)3的可逆性明显优于Li3V2(PO4)3的可逆性。  相似文献   

8.
采用固相法在锂离子电池正极材料LiCoO2表面包覆一层LiFePO4;研究了LiFePO4包覆量对材料性能的影响;采用X射线衍射仪和扫描电镜分析样品的晶体结构和表面形貌.研究结果表明:样品具备LiCoO2的α-NaFeO2型层状结构,但随着包覆量的增加,XRD衍射谱显示样品存在多种杂相;合成的样品电化学性能良好,当LiFePO4的包覆量为1%时,在室温下以0.1C倍率充放电,首次放电比容量达145.9 mA·h/g,纯相LiCoO2放电比容量为146.2 mA·h/g.样品采用1C倍率放电时,首次放电比容量达138.9 mA·h/g,循环性能较好,经过20次循环放电比容量仅衰减4.97%.  相似文献   

9.
新型锂离子电池正极材料Li3V2(PO4)3的合成及其性能   总被引:9,自引:0,他引:9  
以LiOH·H2O、V2O5和NH4H2PO4为原料,C为还原剂,采用高温固相法合成了锂离子电池正极材料磷酸钒锂(Li3V2(PO4)3).考察了合成温度等条件对产物组成和晶相的影响.结果表明:随着焙烧温度的升高,杂相的衍射峰相对强度逐渐减弱,当煅烧温度达到800℃时,杂相衍射峰消失,所得样品为纯相的Li3V2(PO4)3样品;按Li、V、P的摩尔比为3:2:3将原料在800℃下焙烧24 h,合成得到正极材料.该材料在0.1 C充放电制度下,首次充电比容量达到135 mA·h/g,首次放电比容量130 mA·h/g,充放电效率达96.3%;经过20次循环后,放电容量仍然高达110 mA·h/g.对经过20次循环后的样品进行了X射线衍射分析,结果发现,经过20次循环后样品仍然具有单斜晶体结构,样品各主要衍射峰强度都急剧减弱,说明样品在充放电过程中晶体结构发生了变化;采用最小二乘法对样品充放电前后的晶胞参数进行了计算,发现样品在经过充放电循环后晶胞参数都有不同程度的增加,晶胞体积增大0.6%左右.  相似文献   

10.
以Li OH·H2O,Fe SO4·7H2O,H3PO4、Ni SO4、Mn SO4为原料,采用水热法合成了Li Fe1-xNixPO4和Li Fe1-xMnxPO4。采用XRD、FESEM分析了正极材料的组成、结构及形貌,利用电池测试仪测试了正极材料的电化学性能。结果表明:镍、锰掺杂Li Fe PO4具有较好的充放电性能。Li Fe0.9Mn0.1PO4的首次充放电比容量分别为143.5、143 m Ah/g,Li Fe0.95Ni0.05PO4的首次充放电比容量分别为132、131 m Ah/g,离子掺杂能显著提高材料的充放电比容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号