首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Virus-induced neurological sequelae resulting from infection by Theiler’s murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included “resistant” and “susceptible,” as before, as well as a “resilient” TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.  相似文献   

2.
3.
The involvement of insulin/insulin-like growth factor signaling (IIS) pathways in the growth regulation of marine invertebrates remains largely unexplored. In this study, we used a fast-growing Pacific oyster (Crassostrea gigas) variety “Haida No.1” as the material with which to unravel the role of IIS systems in growth regulation in oysters. Systematic bioinformatics analyses allowed us to identify major components of the IIS signaling pathway and insulin-like peptide receptor (ILPR)-mediated signaling pathways, including PI3K-AKT, RAS-MAPK, and TOR, in C. gigas. The expression levels of the major genes in IIS and its downstream signaling pathways were significantly higher in “Haida No.1” than in wild oysters, suggesting their involvement in the growth regulation of C. gigas. The expression profiles of IIS and its downstream signaling pathway genes were significantly altered by nutrient abundance and culture temperature. These results suggest that the IIS signaling pathway coupled with the ILPR-mediated signaling pathways orchestrate the regulation of energy metabolism to control growth in Pacific oysters.  相似文献   

4.
Phytophthora capsici (Leonian), classified as an oomycete, seriously threatens the production of pepper (Capsicum annuum). Current understanding of the defense responses in pepper to P. capsici is limited. In this study, RNA-sequencing analysis was utilized to identify differentially expressed genes in the resistant line “PI 201234”, with 1220 differentially expressed genes detected. Of those genes, 480 were up-regulated and 740 were down-regulated, with 211 candidate genes found to be involved in defense responses based on the gene annotations. Furthermore, the expression patterns of 12 candidate genes were further validated via quantitative real-time PCR (qPCR). These genes were found to be significantly up-regulated at different time points post-inoculation (6 hpi, 24 hpi, and 5 dpi) in the resistant line “PI 201234” and susceptible line “Qiemen”. Seven genes were found to be involved in cell wall modification, phytoalexin biosynthesis, symptom development, and phytohormone signaling pathways, thus possibly playing important roles in combating exogenous pathogens. The genes identified herein will provide a basis for further gene cloning and functional verification studies and will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.  相似文献   

5.
The plant rhizosphere interfaces an array of microbiomes related to plant growth and development. Cultivar-specific soil microbial communities with respect to their taxonomic structure and specific function have not been investigated explicitly in improving the adaptation of lentil cultivars under rice-fallow ecology. The present study was carried out to decipher the rhizosphere microbiome assembly of two lentil cultivars under rice-fallow ecology for discerning the diversity of microbial communities and for predicting the function of microbiome genes related to nitrogen (N) and phosphorus (P) cycling processes deploying high-throughput whole (meta) genome sequencing. The metagenome profile of two cultivars detected variable microbiome composition with discrete metabolic activity. Cyanobacteria, Bacteroidetes, Proteobacteria, Gemmatimonadetes, and Thaumarchaeota were abundant phyla in the “Farmer-2” rhizosphere, whereas Actinobacteria, Acidobacteria, Firmicutes, Planctomycetes, Chloroflexi, and some incompletely described procaryotes of the “Candidatus” category were found to be robustly enriched the rhizosphere of “Moitree”. Functional prediction profiles of the microbial metagenomes between two cultivars revealed mostly house keeping genes with general metabolism. Additionally, the rhizosphere of “Moitree” had a high abundance of genes related to denitrification processes. Significant difference was observed regarding P cycling genes between the cultivars. “Moitree” with a profuse root system exhibited better N fixation and translocation ability due to a good “foraging strategy” for improving acquisition of native P under the nutrient depleted rice-fallow ecology. However, “Farmer-2” revealed a better “mining strategy” for enhancing P solubilization and further transportation to sinks. This study warrants comprehensive research for explaining the role of microbiome diversity and cultivar–microbe interactions towards stimulating microbiome-derived soil reactions regarding nutrient availability under rice-fallow ecology.  相似文献   

6.
Immunotherapy has changed the treatment paradigm in multiple solid and hematologic malignancies. However, response remains limited in a significant number of cases, with tumors developing innate or acquired resistance to checkpoint inhibition. Certain “hot” or “immune-sensitive” tumors become “cold” or “immune-resistant”, with resultant tumor growth and disease progression. Multiple factors are at play both at the cellular and host levels. The tumor microenvironment (TME) contributes the most to immune-resistance, with nutrient deficiency, hypoxia, acidity and different secreted inflammatory markers, all contributing to modulation of immune-metabolism and reprogramming of immune cells towards pro- or anti-inflammatory phenotypes. Both the tumor and surrounding immune cells require high amounts of glucose, amino acids and fatty acids to fulfill their energy demands. Thus, both compete over one pool of nutrients that falls short on needs, obliging cells to resort to alternative adaptive metabolic mechanisms that take part in shaping their inflammatory phenotypes. Aerobic or anaerobic glycolysis, oxidative phosphorylation, tryptophan catabolism, glutaminolysis, fatty acid synthesis or fatty acid oxidation, etc. are all mechanisms that contribute to immune modulation. Different pathways are triggered leading to genetic and epigenetic modulation with consequent reprogramming of immune cells such as T-cells (effector, memory or regulatory), tumor-associated macrophages (TAMs) (M1 or M2), natural killers (NK) cells (active or senescent), and dendritic cells (DC) (effector or tolerogenic), etc. Even host factors such as inflammatory conditions, obesity, caloric deficit, gender, infections, microbiota and smoking status, may be as well contributory to immune modulation, anti-tumor immunity and response to immune checkpoint inhibition. Given the complex and delicate metabolic networks within the tumor microenvironment controlling immune response, targeting key metabolic modulators may represent a valid therapeutic option to be combined with checkpoint inhibitors in an attempt to regain immune function.  相似文献   

7.
8.
9.
10.
11.
Placental insufficiency is a known consequence of maternal heat stress during gestation in farm animals. The molecular regulation of placentae during the stress response is little known in pigs. This study aims to identify differential gene expression in pig placentae caused by maternal heat exposure during early to mid-gestation. RNA sequencing (RNA-seq) was performed on female placental samples from pregnant pigs exposed to thermoneutral control (CON; constant 20 °C; n = 5) or cyclic heat stress (HS; cyclic 28 to 33 °C; n = 5) conditions between d40 and d60 of gestation. On d60 of gestation, placental efficiency (fetal/placental weight) was decreased (p = 0.023) by maternal HS. A total of 169 genes were differentially expressed (FDR ≤ 0.1) between CON and HS placentae of female fetuses, of which 35 genes were upregulated and 134 genes were downregulated by maternal HS. The current data revealed transport activity (FDR = 0.027), glycoprotein biosynthetic process (FDR = 0.044), and carbohydrate metabolic process (FDR = 0.049) among the terms enriched by the downregulated genes (HS vs. CON). In addition, solute carrier (SLC)-mediated transmembrane transport (FDR = 0.008) and glycosaminoglycan biosynthesis (FDR = 0.027), which modulates placental stroma synthesis, were identified among the pathways enriched by the downregulated genes. These findings provide evidence that heat-stress induced placental inefficiency may be underpinned by altered expression of genes associated with placental nutrient transport capacity and metabolism. A further understanding of the molecular mechanism contributes to the identification of placental gene signatures of summer infertility in pigs.  相似文献   

12.
Lactosylceramide (LacCer), also known as CD17/CDw17, is a member of a large family of small molecular weight compounds known as glycosphingolipids. It plays a pivotal role in the biosynthesis of glycosphingolipids, primarily by way of serving as a precursor to the majority of its higher homolog sub-families such as gangliosides, sulfatides, fucosylated-glycosphingolipids and complex neutral glycosphingolipids—some of which confer “second-messenger” and receptor functions. LacCer is an integral component of the “lipid rafts,” serving as a conduit to transduce external stimuli into multiple phenotypes, which may contribute to mortality and morbidity in man and in mouse models of human disease. LacCer is synthesized by the action of LacCer synthase (β-1,4 galactosyltransferase), which transfers galactose from uridine diphosphate galactose (UDP-galactose) to glucosylceramide (GlcCer). The convergence of multiple physiologically relevant external stimuli/agonists—platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), stress, cigarette smoke/nicotine, tumor necrosis factor-α (TNF-α), and in particular, oxidized low-density lipoprotein (ox-LDL)—on β-1,4 galactosyltransferase results in its phosphorylation or activation, via a “turn-key” reaction, generating LacCer. This newly synthesized LacCer activates NADPH (nicotinamide adenine dihydrogen phosphate) oxidase to generate reactive oxygen species (ROS) and a highly “oxidative stress” environment, which trigger a cascade of signaling molecules and pathways and initiate diverse phenotypes like inflammation and atherosclerosis. For instance, LacCer activates an enzyme, cytosolic phospholipase A2 (cPLA2), which cleaves arachidonic acid from phosphatidylcholine. In turn, arachidonic acid serves as a precursor to eicosanoids and prostaglandin, which transduce a cascade of reactions leading to inflammation—a major phenotype underscoring the initiation and progression of several debilitating diseases such as atherosclerosis and cancer. Our aim here is to present an updated account of studies made in the field of LacCer metabolism and signaling using multiple animal models of human disease, human tissue, and cell-based studies. These advancements have led us to propose that previously unrelated phenotypes converge in a LacCer-centric manner. This LacCer synthase/LacCer-induced “oxidative stress” environment contributes to inflammation, atherosclerosis, skin conditions, hair greying, cardiovascular disease, and diabetes due to mitochondrial dysfunction. Thus, targeting LacCer synthase may well be the answer to remedy these pathologies.  相似文献   

13.
Plants, being sessile, face an array of biotic and abiotic stresses in their lifespan that endanger their survival. Hence, optimized uptake of mineral nutrients creates potential new routes for enhancing plant health and stress resilience. Recently, minerals (both essential and non-essential) have been identified as key players in plant stress biology, owing to their multifaceted functions. However, a realistic understanding of the relationship between different ions and stresses is lacking. In this context, ionomics will provide new platforms for not only understanding the function of the plant ionome during stresses but also identifying the genes and regulatory pathways related to mineral accumulation, transportation, and involvement in different molecular mechanisms under normal or stress conditions. This article provides a general overview of ionomics and the integration of high-throughput ionomic approaches with other “omics” tools. Integrated omics analysis is highly suitable for identification of the genes for various traits that confer biotic and abiotic stress tolerance. Moreover, ionomics advances being used to identify loci using qualitative trait loci and genome-wide association analysis of element uptake and transport within plant tissues, as well as genetic variation within species, are discussed. Furthermore, recent developments in ionomics for the discovery of stress-tolerant genes in plants have also been addressed; these can be used to produce more robust crops with a high nutritional value for sustainable agriculture.  相似文献   

14.
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.  相似文献   

15.
16.
Autism spectrum disorders are a group of mental illnesses highly correlated with gastrointestinal dysfunction. Recent studies have shown that there may be one or more microbial “fingerprints” in terms of the composition characterizing individuals with autism, which could be used for diagnostic purposes. This paper proposes a computational approach whereby metagenomes characteristic of “healthy” and autistic individuals are artificially constructed via genomic information, analyzed for the enzymes coded within, and then these enzymes are compared in detail. This is a text mining application. A custom-designed online application was built and used for the comparative metabolomics study and made publically available. Several of the enzyme-catalyzing reactions involved with the amino acid glutamate were curiously missing from the “autism” microbiome and were coded within almost every organism included in the “control” microbiome. Interestingly, there exists a leading hypothesis regarding autism and glutamate involving a neurological excitation/inhibition imbalance; but the association with this study is unclear. The results included data on the transsulfuration and transmethylation pathways, involved with oxidative stress, also of importance to autism. The results from this study are in alignment with leading hypotheses in the field, which is impressive, considering the purely in silico nature of this study. The present study provides new insight into the complex metabolic interactions underlying autism, and this novel methodology has potential to be useful for developing new hypotheses. However, limitations include sparse genome data availability and conflicting literature experimental data. We believe our software tool and methodology has potential for having great utility as data become more available, comprehensive and reliable.  相似文献   

17.
18.
To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in “Roggusanmaru” and “Super Doterang”. Fe deficiency (Moderate, low and –Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of “Roggusanmaru”, while a slight variation was observed in “Super Doterang” cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in “Roggusanmaru” than “Super Doterang” cultivar. The total protein profile in leaves and roots determines that “Super Doterang” exhibited an optimal tolerance to Fe deficiency compared to “Roggusanmaru” cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in “Roggusanmaru” than “Super Doterang” cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in “Super Doterang” than “Roggusanmaru” cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in “Roggusanmaru”, while increased in “Super Doterang” cultivar under Fe deficient conditions. The H+-ATPase relative gene expression (SlAHA1) in roots were maintained in “Super Doterang” compared to “Roggusanmaru”. Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in “Super Doterang”, whereas decreased in “Roggusanmaru” cultivar under Fe deficiency. The present study suggested that “Super Doterang” is better tomato cultivar than “Roggusanmaru” for calcareous soils.  相似文献   

19.
20.
We aim to compare the relative heritability contributed by variants of behavior-related environmental phenotypes and elucidate the role of these factors in the conundrum of “missing heritability” of type 2 diabetes. Methods: We used Linkage-Disequilibrium Adjusted Kinships (LDAK) and LDAK-Thin models to calculate the relative heritability of each variant and compare the relative heritability for each phenotype. Biological analysis was carried out for the phenotype whose variants made a significant contribution. Potential hub genes were prioritized based on topological parameters of the protein-protein interaction network. We included 16 behavior-related phenotypes and 2607 valid variants. In the LDAK model, we found the variants of alcohol consumption and caffeine intake were identified as contributing higher relative heritability than that of the random variants. Compared with the relative expected heritability contributed by the variants associated with type 2 diabetes, the relative expected heritability contributed by the variants associated with these two phenotypes was higher. In the LDAK-Thin model, the relative heritability of variants of 11 phenotypes was statistically higher than random variants. Biological function analysis showed the same distributions among type 2 diabetes and alcohol consumption. We eventually screened out 31 hub genes interacting intensively, four of which were validated and showed the upregulated expression pattern in blood samples seen in type 2 diabetes cases. Conclusion: We found that alcohol consumption contributed higher relative heritability. Hub genes may influence the onset of type 2 diabetes by a mediating effect or a pleiotropic effect. Our results provide new insight to reveal the role of behavior-related factors in the conundrum of “missing heritability” of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号