首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
Reactive oxygen species (ROS) are natural byproducts of oxygen metabolism in the cell. At physiological levels, they play a vital role in cell signaling. However, high ROS levels cause oxidative stress, which is implicated in cardiovascular diseases (CVD) such as atherosclerosis, hypertension, and restenosis after angioplasty. Despite the great amount of research conducted to identify the role of ROS in CVD, the image is still far from being complete. A common event in CVD pathophysiology is the switch of vascular smooth muscle cells (VSMCs) from a contractile to a synthetic phenotype. Interestingly, oxidative stress is a major contributor to this phenotypic switch. In this review, we focus on the effect of ROS on the hallmarks of VSMC phenotypic switch, particularly proliferation and migration. In addition, we speculate on the underlying molecular mechanisms of these cellular events. Along these lines, the impact of ROS on the expression of contractile markers of VSMCs is discussed in depth. We conclude by commenting on the efficiency of antioxidants as CVD therapies.  相似文献   

3.
Background: Autophagy is a highly conserved catabolic homeostatic process, crucial for cell survival. It has been shown that autophagy can modulate different cardiovascular pathologies, including vascular calcification (VCN). Objective: To assess how modulation of autophagy, either through induction or inhibition, affects vascular and valvular calcification and to determine the therapeutic applicability of inducing autophagy. Data sources: A systematic review of English language articles using MEDLINE/PubMed, Web of Science (WoS) and the Cochrane library. The search terms included autophagy, autolysosome, mitophagy, endoplasmic reticulum (ER)-phagy, lysosomal, calcification and calcinosis. Study characteristics: Thirty-seven articles were selected based on pre-defined eligibility criteria. Thirty-three studies (89%) studied vascular smooth muscle cell (VSMC) calcification of which 27 (82%) studies investigated autophagy and six (18%) studies lysosomal function in VCN. Four studies (11%) studied aortic valve calcification (AVCN). Thirty-four studies were published in the time period 2015–2020 (92%). Conclusion: There is compelling evidence that both autophagy and lysosomal function are critical regulators of VCN, which opens new perspectives for treatment strategies. However, there are still challenges to overcome, such as the development of more selective pharmacological agents and standardization of methods to measure autophagic flux.  相似文献   

4.
5.
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.  相似文献   

6.
Translationally controlled tumor protein (TCTP), a repressor for Na,K-ATPase has been implicated in the development of systemic hypertension, as proved by TCTP-over-expressing transgenic (TCTP-TG) mice. Aorta of TCTP-TG exhibited hypercontractile response compared to that of non-transgenic mice (NTG) suggesting dys-regulation of signaling pathways involved in the vascular contractility by TCTP. Because dys-regulation of RhoA/Rho kinase pathway is implicated in increased vascular contractility, we examined whether TCTP induces alterations in RhoA pathway in vascular smooth muscle cells (VSMCs). We found that TCTP over-expression by adenovirus infection up-regulated RhoA pathway including the expression of RhoA, and its downstream signalings, phosphorylation of myosin phosphatase target protein (MYPT-1), and myosin light chain (MLC). Conversely, lentiviral silencing of TCTP reduced the RhoA expression and Rho kinase signalings. Using immunohistochemical and Western blotting studies on aortas from TCTP-TG confirmed the elevated expression of RhoA and increase in p-MLC (phosphorylated MLC). In contrast, down-regulation of RhoA and p-MLC were found in aortas from heterozygous mice with deleted allele of TCTP (TCTP+/−). We conclude that up-regulation of TCTP induces RhoA-mediated pathway, and that TCTP-induced RhoA plays a role in the regulation in vasculature. Modulation of TCTP may offer a therapeutic target for hypertension and in vascular contractility dysfunction.  相似文献   

7.
Obesity is characterized by poor collateral vessel formation, a process involving vascular endothelial growth factor (VEGF) action on vascular smooth muscle cells (VSMC). Free fatty acids are involved in the pathogenesis of obesity vascular complications, and we have aimed to clarify whether oleic acid (OA) enhances VEGF synthesis/secretion in VSMC, and whether this effect is impaired in obesity. In cultured aortic VSMC from lean and obese Zucker rats (LZR and OZR, respectively) we measured the influence of OA on VEGF-A synthesis/secretion, signaling molecules and reactive oxygen species (ROS). In VSMC from LZR we found the following: (a) OA increases VEGF-A synthesis/secretion by a mechanism blunted by inhibitors of Akt, mTOR, ERK-1/2, PKC-beta, NADPH-oxidase and mitochondrial electron transport chain complex; (b) OA activates the above mentioned signaling pathways and increases ROS; (c) OA-induced activation of PKC-beta enhances oxidative stress, which activates signaling pathways responsible for the increased VEGF synthesis/secretion. In VSMC from OZR, which present enhanced baseline oxidative stress, the above mentioned actions of OA on VEGF-A, signaling pathways and ROS are impaired: this impairment is reproduced in VSMC from LZR by incubation with hydrogen peroxide. Thus, in OZR chronically elevated oxidative stress causes a resistance to the action on VEGF that OA exerts in LZR by increasing ROS.  相似文献   

8.
Proliferation and migration of vascular smooth muscle cells (VSMC) are important in the development and/or progression of many cardiovascular diseases, including atherosclerosis. Evidence shows that matrix metalloproteinase (MMP)-2 and MMP-9 are related to the pathogenesis of atherosclerosis. The expressions of MMP-2 and MMP-9 in atherosclerosis are regulated via various pathways, such as p38 mitogen activated protein kinase (MAPK), extracellular signal regulated kinase 1 and 2 (ERK1/2), Akt, and nuclear factor kappa (NF-κB). Di(2-ethylhexyl) phthalate (DEHP) has been shown to induce atherosclerosis by increasing tumor necrosis factor (TNF)-α, interleukin (IL)-6, and intercellular adhesion molecule (ICAM) productions. However, whether DEHP poses any effects on MMP-2 or MMP-9 expression in VSMC has not yet been answered. In our studies, rat aorta VSMC was treated with DEHP (between 2 and 17.5 ppm) and p38 MAPK, ERK1/2, Akt, NF-κB, and MMP-2 and MMP-9 proteins and activities were measured. Results showed that the presence of DEHP can induce higher MMP-2 and MMP-9 expression than the controls. Similar results on MMP-regulating proteins, i.e., p38 MAPK, ERK1/2, Akt, and NF-κB, were also observed. In summary, our current results have showed that DEHP can be a potent inducer of atherosclerosis by increasing MMP-2 and MMP-9 expression at least through the regulations of p38 MAPK, ERK1/2, Akt, and NF-κB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号