首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt stress represents an increasing threat to crop growth and yield in saline soil. In this study, we identified a maize calcineurin B-like protein-interacting protein kinase (CIPK), ZmCIPK21, which was primarily localized in the cytoplasm and the nucleus of cells and displayed enhanced expression under salt stress. Over-expression of ZmCIPK21 in wild-type Arabidopsis plants increased their tolerance to salt, as supported by the longer root lengths and improved growth. The downstream stress-response genes, including dehydration-responsive element-binding (DREB) genes were also activated in transgenic plants over-expressing ZmCIPK21. In addition, introduction of the transgenic ZmCIPK21 gene into the Arabidopsis mutant cipk1-2 rescued the salt-sensitive phenotype under high salt stress. Measurement of Na+ and K+ content in transgenic plants showed that over-expression of ZmCIPK21 decreased accumulation of Na+ and allowed retention of relatively high levels of K+, thereby enhancing plant tolerance to salt conditions.  相似文献   

2.
Drought stress is one of the major abiotic stresses that are a threat to crop production worldwide. Drought stress impairs the plants growth and yield. Therefore, the aim of the present experiment was to select the tolerant genotype/s on the basis of moprpho-physiological and biochemical characteristics of 10 Vicia faba genotypes (Zafar 1, Zafar 2, Shebam, Makamora, Espan, Giza Blanka, Giza 3, C4, C5 and G853) under drought stress. We studied the effect of different levels of drought stress i.e., (i) normal irrigation (ii) mild stress (iii) moderate stress, and (iv) severe stress on plant height (PH) plant−1, fresh weight (FW) and dry weight (DW) plant−1, area leaf−1, leaf relative water content (RWC), proline (Pro) content, total chlorophyll (Total Chl) content, electrolyte leakage (EL), malondialdehyde (MDA), hydrogen peroxide (H2O2) content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) of genotypes of faba bean. Drought stress reduced all growth parameters and Total Chl content of all genotypes. However, the deteriorating effect of drought stress on the growth performance of genotypes “C5” and “Zafar 1” were relatively low due to its better antioxidant enzymes activities (CAT, POD and SOD), and accumulation of Pro and Total Chl, and leaf RWC. In the study, genotype “C5” and “Zafar 1” were found to be relatively tolerant to drought stress and genotypes “G853” and “C4” were sensitive to drought stress.  相似文献   

3.
To investigate Fe deficiency tolerance in tomato cultivars, quantification of proteins and genes involved in Fe metabolism and antioxidant mechanisms were performed in “Roggusanmaru” and “Super Doterang”. Fe deficiency (Moderate, low and –Fe) significantly decreased the biomass, total, and apoplastic Fe concentration of “Roggusanmaru”, while a slight variation was observed in “Super Doterang” cultivar. The quantity of important photosynthetic pigments such as total chlorophyll and carotenoid contents significantly decreased in “Roggusanmaru” than “Super Doterang” cultivar. The total protein profile in leaves and roots determines that “Super Doterang” exhibited an optimal tolerance to Fe deficiency compared to “Roggusanmaru” cultivar. A reduction in expression of PSI (photosystem I), PSII (photosystem II) super-complexes and related thylakoid protein contents were detected in “Roggusanmaru” than “Super Doterang” cultivar. Moreover, the relative gene expression of SlPSI and SlPSII were well maintained in “Super Doterang” than “Roggusanmaru” cultivar. The relative expression of genes involved in Fe-transport (SlIRT1 and SlIRT2) and Fe(III) chelates reductase oxidase (SlFRO1) were relatively reduced in “Roggusanmaru”, while increased in “Super Doterang” cultivar under Fe deficient conditions. The H+-ATPase relative gene expression (SlAHA1) in roots were maintained in “Super Doterang” compared to “Roggusanmaru”. Furthermore, the gene expressions involved in antioxidant defense mechanisms (SlSOD, SlAPX and SlCAT) in leaves and roots showed that these genes were highly increased in “Super Doterang”, whereas decreased in “Roggusanmaru” cultivar under Fe deficiency. The present study suggested that “Super Doterang” is better tomato cultivar than “Roggusanmaru” for calcareous soils.  相似文献   

4.
In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.  相似文献   

5.
Abscisic acid (ABA) plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO) analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.  相似文献   

6.
7.
8.
9.
Grain legumes are important crops, but they are salt sensitive. This research dissected the responses of four (sub)tropical grain legumes to ionic components (Na+ and/or Cl) of salt stress. Soybean, mungbean, cowpea, and common bean were subjected to NaCl, Na+ salts (without Cl), Cl salts (without Na+), and a “high cation” negative control for 57 days. Growth, leaf gas exchange, and tissue ion concentrations were assessed at different growing stages. For soybean, NaCl and Na+ salts impaired seed dry mass (30% of control), more so than Cl salts (60% of control). All treatments impaired mungbean growth, with NaCl and Cl salt treatments affecting seed dry mass the most (2% of control). For cowpea, NaCl had the greatest adverse impact on seed dry mass (20% of control), while Na+ salts and Cl salts had similar intermediate effects (~45% of control). For common bean, NaCl had the greatest adverse effect on seed dry mass (4% of control), while Na+ salts and Cl salts impaired seed dry mass to a lesser extent (~45% of control). NaCl and Na+ salts (without Cl) affected the photosynthesis (Pn) of soybean more than Cl salts (without Na+) (50% of control), while the reverse was true for mungbean. Na+ salts (without Cl), Cl salts (without Na+), and NaCl had similar adverse effects on Pn of cowpea and common bean (~70% of control). In conclusion, salt sensitivity is predominantly determined by Na+ toxicity in soybean, Cl toxicity in mungbean, and both Na+ and Cl toxicity in cowpea and common bean.  相似文献   

10.
11.
12.
Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.  相似文献   

13.
14.
15.
Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. “Gacela F1”) was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.  相似文献   

16.
The Solanaceae family includes some important vegetable crops, and they often suffer from salinity stress. Some miRNAs have been identified to regulate gene expression in plant response to salt stress; however, little is known about the involvement of miRNAs in Solanaceae species. To identify salt-responsive miRNAs, high-throughput sequencing was used to sequence libraries constructed from roots of the salt tolerant species, Solanum linnaeanum, treated with and without NaCl. The sequencing identified 98 conserved miRNAs corresponding to 37 families, and some of these miRNAs and their expression were verified by quantitative real-time PCR. Under the salt stress, 11 of the miRNAs were down-regulated, and 3 of the miRNAs were up-regulated. Potential targets of the salt-responsive miRNAs were predicted to be involved in diverse cellular processes in plants. This investigation provides valuable information for functional characterization of miRNAs in S. linnaeanum, and would be useful for developing strategies for the genetic improvement of the Solanaceae crops.  相似文献   

17.
18.
A wild wheatgrass, Thinopyrum ponticum (2n = 10x = 70), which exhibits substantially higher levels of salt tolerance than cultivated wheat, was employed to transfer its salt tolerance to common wheat by means of wide hybridization. A highly salt-tolerant wheat line S148 (2n = 42) was obtained from the BC3F2 progenies between Triticum aestivum (2n = 42) and Th. ponticum. In the cross of S148 × salt-sensitive wheat variety Chinese Spring, the BC4F2 seeds at germination stage segregated into a ratio of 3 salt tolerant to 1 salt sensitive, indicating that the salt tolerance was conferred by a dominant gene block. Genomic in situ hybridization analysis revealed that S148 had a single pair of Th. ponticumT. aestivum translocated chromosomes bearing the salt-tolerance. This is an initial step of molecular breeding for salt-tolerant wheat.  相似文献   

19.
Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum.  相似文献   

20.
The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号