首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rosacea is a common chronic cutaneous inflammatory disorder. Recently, patients with rosacea were identified as having a higher risk of developing various comorbidities such as cardiovascular disease, psychiatric disorders, neurologic disorders, and gastrointestinal disorders. However, the risks of some comorbidities in patients with rosacea are somewhat contradictory, depending upon the study design. Moreover, pathomechanisms associated with the comorbidities of patients with rosacea remain poorly elucidated. The purpose of this review was to provide the most up-to-date evidence on the risks of neuropsychiatric and gastrointestinal comorbidities in patients with rosacea. Moreover, the molecular pathomechanisms associated with neuropsychiatric and gastrointestinal comorbidities in patients with rosacea were evaluated based on recent studies. This review was also intended to focus more on the role of the gut–brain–skin axis in the association of neuropsychiatric and gastrointestinal comorbidities in rosacea.  相似文献   

2.
3.
Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.  相似文献   

4.
The diagnosis of neuromuscular diseases (NMDs) has been progressively evolving from the grouping of clinical symptoms and signs towards the molecular definition. Optimal clinical, biochemical, electrophysiological, electrophysiological, and histopathological characterization is very helpful to achieve molecular diagnosis, which is essential for establishing prognosis, treatment and genetic counselling. Currently, the genetic approach includes both the gene-targeted analysis in specific clinically recognizable diseases, as well as genomic analysis based on next-generation sequencing, analyzing either the clinical exome/genome or the whole exome or genome. However, as of today, there are still many patients in whom the causative genetic variant cannot be definitely established and variants of uncertain significance are often found. In this review, we address these drawbacks by incorporating two additional biological omics approaches into the molecular diagnostic process of NMDs. First, functional genomics by introducing experimental cell and molecular biology to analyze and validate the variant for its biological effect in an in-house translational diagnostic program, and second, incorporating a multi-omics approach including RNA-seq, metabolomics, and proteomics in the molecular diagnosis of neuromuscular disease. Both translational diagnostics programs and omics are being implemented as part of the diagnostic process in academic centers and referral hospitals and, therefore, an increase in the proportion of neuromuscular patients with a molecular diagnosis is expected. This improvement in the process and diagnostic performance of patients will allow solving aspects of their health problems in a precise way and will allow them and their families to take a step forward in their lives.  相似文献   

5.
基于聚合物分子量分布的乙烯淤浆聚合工艺优化   总被引:1,自引:1,他引:0       下载免费PDF全文
分子量及分布是聚合物生产过程中极其重要的质量指标,但目前的技术水平并不能实现分子量及其分布的实时测量,基于反应机理的动态建模是实现其软测量的重要方法。以乙烯淤浆聚合工艺为研究对象,基于聚合机理,分别以聚合物的平均分子量和分子量分布为目标,以循环气中氢气乙烯比为决定变量,采用稳态优化方法求取聚合物生产的工艺条件。结果表明:以平均分子量为优化目标所得的结果与分析值的偏差较大,虽然聚合物的平均分子量符合要求,但聚合物的分子量分布曲线与所需产品的分子量分布曲线之间的最大误差可达0.092;而以分子量分布曲线为目标所得的最大误差只有0.069。因此,以分子量分布曲线作为目标的优化方法明显比常规的以平均分子量为目标的优化方法优越。  相似文献   

6.
用拓扑方法研究了LAS的EACN值与分子结构的关系。根据分子结构的特点,用距离矩阵表征分子中原子的连接性。据此提出一个结构基础明确的定量关系式。对C12~C20LAS的计算结果表明,计算值与文献值的一致性令人满意。对LAS各种异构体的预测结果与实验规律一致。应用这一定量关系式,不仅能够合理表征LAS的结构性能关系,而且有助于揭示物质结构与性能之间的关系。  相似文献   

7.
Protein engineering has led to a significantly improved understanding of the biophysical properties of proteins and, importantly, of the molecular mechanisms of disease. Moreover, it has enabled scientists to modify the molecular characteristics of peptides and proteins, leading to improved pharmacokinetics and pharmacodynamics of protein therapeutics. Consequently, biopharmaceuticals, such as monoclonal antibodies (mAbs), interferons/cytokines or vaccines, contribute increasingly to clinical practice. Some of these new treatments have dramatically changed the outcome of specific diseases. However, treatment options remain limited in many conditions, particularly in malignant disease, despite a much-improved understanding of the molecular mechanisms underlying cancer. With the successful pre-clinical development of therapeutic biomolecules, the most significant barrier prior to implementation into clinical practice is proof of concept in humans. This is in part addressed by clinical trials that evaluate the toxicology, dose response and efficacy of the molecules. This observational study summarises the current state of biopharmaceuticals in clinical trials and provides a particular focus on oncology trials. It identifies those cancer types that are most likely to benefit from the efforts made in pre-clinical protein science and establishes evidence that engineered proteins and peptides are set to play a growing role in clinical practice. This study was based on the 95,254 trials registered on the National Institute of Health Clinical Trials Database by 31 August 2010. Of these, 25,525 trials assigned to cancer conditions, including leukaemia and lymphoma, were further analysed, with a particular focus on the 3653 interventional trials that were based on biological interventions. The inclusion criterion for the analysis was registration on the Clinical Trials Database by the above date. No other trials were included. Biopharmaceuticals were the more prevalent intervention in cancer trials (14%) compared with trials in non-cancer conditions (6%). Further subgroup analysis based on the 20 cancer subtypes with the highest mortality revealed that biological therapeutics comprise 43% in malignant melanoma trials and more than 20% in five other cancer types. Two-thirds of all monoclonal antibody are registered in cancer trials (1033, 4.6% of all cancer trials). The subgroup analysis demonstrated a predominance of lymphoma and leukaemia trials for antibody interventions, with 204 and 163 trials registered, respectively. In non-cancer conditions only 503 (0.9%) trials investigate monoclonal antibody interventions. A retrospective longitudinal analysis of the trials demonstrated that monoclonal antibody trials are increasingly frequently registered in non-cancer as well as cancer conditions. However, biopharmaceutical trials continue to be registered more frequently only in non-cancer conditions, but have come to a plateau in cancers. This study is limited by analysis of data from one database only. While the NIH Clinical Trials Database used is the most comprehensive and internationally recognised of its kind, it is possible that the results may have been modified if other databases were also included. Protein engineering has paved the way for biopharmaceutical clinical interventions. A cross-sectional analysis of trials registered on the NIH Clinical Trial Database shows that biological interventions are increasingly entered into clinical trials. While oncological diseases used to lead this effort, biotherapeutic trials in non-cancer conditions have now become more frequent in comparison. Monoclonal antibodies, however, are still mainly investigated in oncological conditions. Haemato-oncological diseases are most frequently investigated for mAb interventions, although they are not among the eight most common causes of cancer mortality. This may reflect the fact that pre-clinical research, understanding of molecular mechanisms and target identification in other malignancies and diseases is less developed.  相似文献   

8.
Acquiring oocyte competence requires optimal mitochondrial function and adequate ATP levels. In this context, CoQ10 supplementation may improve human oocyte quality and subsequent reproductive performance given its role in ATP synthesis and mitochondrial protection from ROS oxidative damage. In infertility treatments, CoQ10 therapy can be orally supplied to promote a more favorable environment for oocyte development in vivo or by its addition to culture media in an attempt to improve its quality in vitro. Human clinical studies evaluating the impact of CoQ10 on reproductive performance are summarized in this review, although the available data do not clearly prove its ability to improve human oocyte quality. The main objective is to provide readers with a complete overview of this topic’s current status as well as the keys for potential future research lines that may help to take this therapy to clinical practice. Indeed, further clinical trials are needed to confirm these results along with molecular studies to evaluate the impact of CoQ10 supplementation on oxidative stress status and mitochondrial function in human gametes.  相似文献   

9.
Multiple myeloma (MM) is a genetically complex disease that results from a multistep transformation of normal to malignant plasma cells in the bone marrow. However, the molecular mechanisms responsible for the initiation and heterogeneous evolution of MM remain largely unknown. A fundamental step needed to understand the oncogenesis of MM and its response to therapy is the identification of driver mutations. The introduction of gene expression profiling (GEP) in MM is an important step in elucidating the molecular heterogeneity of MM and its clinical relevance. Since some mutations in myeloma occur in non-coding regions, studies based on the analysis of mRNA provide more comprehensive information on the oncogenic pathways and mechanisms relevant to MM biology. In this review, we discuss the role of gene expression profiling in understanding the biology of multiple myeloma together with the clinical manifestation of the disease, as well as its impact on treatment decisions and future directions.  相似文献   

10.
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.  相似文献   

11.
用拓扑方法研究了LAS的EACN值与分子结构的关系.根据分子结构的特点,用距离矩阵表征分子中原子的连接性.据此提出一个结构基础明确的定量关系式,其复相关系数大于0.99.对LAS各种异构体的预测结果与实验规律一致.应用这一定量关系式,不仅能够合理表征LAS的结构性能关系,而且有助于揭示物质结构与性能之间的关系.  相似文献   

12.
Skin cancer is the most common type of cancer in the US with an increasing prevalence worldwide. While ultraviolet (UV) radiation is a well-known risk factor, there is emerging evidence that the microbiota may also contribute. In recent years, the human microbiota has become a topic of great interest, and its association with inflammatory skin diseases (i.e., atopic dermatitis, acne, rosacea) has been explored. Little is known of the role of microbiota in skin cancer, but with the recognized link between microbial dysbiosis and inflammation, and knowledge that microbiota modulates the effect of UV-induced immunosuppression, theories connecting the two have surfaced. In this paper, we provide a comprehensive review of the key literature on human microbiota, especially the skin microbiota, and skin cancer (i.e., non-melanoma skin cancer, melanoma, cutaneous T cell lymphoma). Also, mechanistic perspectives as to how our microbiota influence skin cancer development and treatment are offered.  相似文献   

13.
拓扑指数法研究直链烷基芳基磺酸盐的构效关系   总被引:2,自引:0,他引:2  
利用拓扑指数法研究了直链烷基芳基磺酸盐的分子结构与等效烷烃碳数和生物降解性的关系.根据分子结构的特点,用距离矩阵表征分子中原子的连接性,据此建立相应的定量结构性能关系式.计算了25个直链烷基芳基磺酸盐的等效烷烃碳数和19个直链烷基芳基磺酸盐的生物降解性,计算结果表明,计算值与文献值的相关系数分别为0.997 2和0.985 0,其相对误差范围分别为-14.38~0.46及-0.06~0.08.  相似文献   

14.
The incidences of traumatic brain injuries (TBIs) are increasing globally because of expanding population and increased dependencies on motorized vehicles and machines. This has resulted in increased socio-economic burden on the healthcare system, as TBIs are often associated with mental and physical morbidities with lifelong dependencies, and have severely limited therapeutic options. There is an emerging need to identify the molecular mechanisms orchestrating these injuries to life-long neurodegenerative disease and a therapeutic strategy to counter them. This review highlights the dynamics and role of choline-containing phospholipids during TBIs and how they can be used to evaluate the severity of injuries and later targeted to mitigate neuro-degradation, based on clinical and preclinical studies. Choline-based phospholipids are involved in maintaining the structural integrity of the neuronal/glial cell membranes and are simultaneously the essential component of various biochemical pathways, such as cholinergic neuronal transmission in the brain. Choline or its metabolite levels increase during acute and chronic phases of TBI because of excitotoxicity, ischemia and oxidative stress; this can serve as useful biomarker to predict the severity and prognosis of TBIs. Moreover, the effect of choline-replenishing agents as a post-TBI management strategy has been reviewed in clinical and preclinical studies. Overall, this review determines the theranostic potential of choline phospholipids and provides new insights in the management of TBI.  相似文献   

15.
The AKT protein kinase plays a central role in several interconnected molecular pathways involved in growth, apoptosis, angiogenesis, and cell metabolism. It thereby represents a therapeutic target, especially in hormone receptor-positive (HR) breast cancers, where the PI3K/AKT signaling pathway is largely hyperactivated. Moreover, resistance to therapeutic classes, including endocrine therapy, is associated with the constitutive activation of the PI3K/AKT pathway. Improved knowledge on the molecular mechanisms underlying resistance to endocrine therapy has led to the diversification of the therapeutic arsenal, notably with the development of PI3K and mTOR inhibitors, which are currently approved for the treatment of advanced HR-positive breast cancer patients. AKT itself constitutes a novel pharmacological target for which AKT inhibitors have been developed and tested in clinical trials. However, despite its pivotal role in cell survival and anti-apoptotic mechanisms, as well as in endocrine therapy resistance, few drugs have been developed and are available for clinical practice. The scope of the present review is to focus on the pivotal role of AKT in metastatic breast cancer through the analysis of its molecular features and to discuss clinical implications and remaining challenges in the treatment of HR-positive metastatic breast cancer.  相似文献   

16.
The CpG island methylator phenotype (CIMP) can be regarded as the most notable emanation of epigenetic instability in cancer. Since its discovery in the late 1990s, CIMP has been extensively studied, mainly in colorectal cancers (CRC) and gliomas. Consequently, knowledge on molecular and pathological characteristics of CIMP in CRC and other tumour types has rapidly expanded. Concordant and widespread hypermethylation of multiple CpG islands observed in CIMP in multiple cancers raised hopes for future epigenetically based diagnostics and treatments of solid tumours. However, studies on CIMP in solid tumours were hampered by a lack of generalisability and reproducibility of epigenetic markers. Moreover, CIMP was not a satisfactory marker in predicting clinical outcomes. The idea of targeting epigenetic abnormalities such as CIMP for cancer therapy has not been implemented for solid tumours, either. Twenty-one years after its discovery, we aim to cover both the fundamental and new aspects of CIMP and its future application as a diagnostic marker and target in anticancer therapies.  相似文献   

17.
Protein tyrosine phosphatase 1B (PTP1B) is a very promising target for the treatment of metabolic disorders such as type II diabetes mellitus. Although it was validated as a promising target for this disease more than 30 years ago, as yet there is no drug in advanced clinical trials, and its biochemical mechanism and functions are still being studied. In the present study, based on our experience generating PTP1B inhibitors, we have developed and implemented a scaffold-hopping approach to vary the pyrrole ring of the pyrrolo[1,2-a]quinoxaline core, supported by extensive computational techniques aimed to explain the molecular interaction with PTP1B. Using a combination of docking, molecular dynamics and end-point free-energy calculations, we have rationally designed a hypothesis for new PTP1B inhibitors, supporting their recognition mechanism at a molecular level. After the design phase, we were able to easily synthesize proposed candidates and their evaluation against PTP1B was found to be in good concordance with our predictions. Moreover, the best candidates exhibited glucose uptake increments in cellulo model, thus confirming their utility for PTP1B inhibition and validating this approach for inhibitors design and molecules thus obtained.  相似文献   

18.
Anesthetic agents cause unique electroencephalogram (EEG) activity resulting from actions on their diverse molecular targets. Typically to produce balanced anesthesia in the clinical setting, several anesthetic and adjuvant agents are combined. This creates challenges for the clinical use of intraoperative EEG monitoring, because computational approaches are mostly limited to spectral analyses and different agents and combinations produce different EEG responses. Thus, testing of many combinations of agents is needed to generate accurate, protocol independent analyses. Additionally, most studies to develop new computational approaches take place in young, healthy adults and electrophysiological responses to anesthetics vary widely at the extremes of age, due to physiological brain differences. Below, we discuss the challenges associated with EEG biomarker identification for anesthetic depth based on the diversity of molecular targets. We suggest that by focusing on the generalized effects of anesthetic agents on network activity, we can create paths for improved universal analyses.  相似文献   

19.
分子模拟与化学工程   总被引:15,自引:0,他引:15  
从分子水平来研究化工过程及产品的开发和设计是21世纪化学工程的一个重要方向.综述了计算机分子模拟中的MonteCarlo分子模拟和分子动力学模拟两种方法及其在化工中的应用,涉及分子模拟在建立状态方程和研究分子微观结构、相界面、扩散性质等方面的应用进展.指出分子模拟对化学工程的基础研究、工艺过程以及新产品开发将发挥巨大作用.  相似文献   

20.
Molecular machines embedded in a Langmuir monolayer at the air-water interface can be operated by application of lateral pressure. As part of the challenge associated with versatile sensing of biologically important substances, we here demonstrate discrimination of nucleotides by applying a cholesterol-armed-triazacyclononane host molecule. This molecular machine can discriminate ribonucleotides based on a twofold to tenfold difference in binding constants under optimized conditions including accompanying ions in the subphase and lateral surface pressures of its Langmuir monolayer. The concept of mechanical tuning of the host structure for optimization of molecular recognition should become a novel methodology in bio-related nanotechnology as an alternative to traditional strategies based on increasingly complex and inconvenient molecular design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号