首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For rapid and unlimited cell growth and proliferation, cancer cells require large quantities of nutrients. Many metabolic pathways and nutrient uptake systems are frequently reprogrammed and upregulated to meet the demand from cancer cells, including the demand for lipids. The lipids for most adult normal cells are mainly acquired from the circulatory system. Whether different cancer cells adopt identical mechanisms to ensure sufficient lipid supply, and whether the lipid demand and supply meet each other, remains unclear, and was investigated in lung cancer cells. Results showed that, despite frequent upregulation in de novo lipogenesis and the lipid transporter system, different lung cancer cells adopt different proteins to acquire sufficient lipids, and the lipid supply frequently exceeds the demand, as significant amounts of lipids stored in the lipid droplets could be found within lung cancer cells. Lipid droplet surface protein, PLIN3, was found frequently overexpressed since the early stage in lung cancer tissues. Although the expression is not significantly associated with a specific gender, age, histology type, disease stage, and smoking habit, the frequently elevated expression of PLIN3 protein indicates the importance of lipid droplets for lung cancer. These lipid droplets are not only for nutrient storage, but are also crucial for tumor growth and proliferation, as well as survival in starvation. These results suggest that manipulation of lipid droplet formation or TG storage in lung cancer cells could potentially decrease the progression of lung cancer. Further exploration of lipid biology in lung cancer could help design novel treatment strategies.  相似文献   

2.
3.
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.  相似文献   

4.
Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.  相似文献   

5.
Hypoxia is a major obstacle to gastric cancer (GC) therapy and leads to chemoresistance as GC cells are frequently exposed to the hypoxia environment. Apigenin, a flavonoid found in traditional medicine, fruits, and vegetables and an HDAC inhibitor, is a powerful anti-cancer agent against various cancer cell lines. However, detailed mechanisms involved in the treatment of GC using APG are not fully understood. In this study, we investigated the biological activity of and molecular mechanisms involved in APG-mediated treatment of GC under hypoxia. APG promoted autophagic cell death by increasing ATG5, LC3-II, and phosphorylation of AMPK and ULK1 and down-regulating p-mTOR and p62 in GC. Furthermore, our results show that APG induces autophagic cell death via the activation of the PERK signaling, indicating an endoplasmic reticulum (ER) stress response. The inhibition of ER stress suppressed APG-induced autophagy and conferred prolonged cell survival, indicating autophagic cell death. We further show that APG induces ER stress- and autophagy-related cell death through the inhibition of HIF-1α and Ezh2 under normoxia and hypoxia. Taken together, our findings indicate that APG activates autophagic cell death by inhibiting HIF-1α and Ezh2 under hypoxia conditions in GC cells.  相似文献   

6.
Hypoxia, a decrease in cellular or tissue level oxygen content, is characteristic of most tumors and has been shown to drive cancer progression by altering multiple subcellular processes. We hypothesized that the cancer cells in a hypoxic environment might have slower proliferation rates and increased invasion and migration rates with altered endocytosis compared to the cancer cells in the periphery of the tumor mass that experience normoxic conditions. We induced cellular hypoxia by exposing cells to cobalt chloride, a chemical hypoxic mimicking agent. This study measured the effect of hypoxia on cell proliferation, migration, and invasion. Uptake of fluorescently labeled transferrin, galectin3, and dextran that undergo endocytosis through major endocytic pathways (Clathrin-mediated pathway (CME), Clathrin-independent pathway (CIE), Fluid phase endocytosis (FPE)) were analyzed during hypoxia. Also, the organelle changes associated with hypoxia were studied with organelle trackers. We found that the proliferation rate decreased, and the migration and invasion rate increased in cancer cells in hypoxic conditions compared to normoxic cancer cells. A short hypoxic exposure increased galectin3 uptake in hypoxic cancer cells, but a prolonged hypoxic exposure decreased clathrin-independent endocytic uptake of galectin 3. Subcellular organelles, such as mitochondria, increased to withstand the hypoxic stress, while other organelles, such as Endoplasmic reticulum (ER), were significantly decreased. These data suggest that hypoxia modulates cellular endocytic pathways with reduced proliferation and enhanced cell migration and invasion.  相似文献   

7.
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)—the evolutionarily conserved ortholog of human NTE/PNPLA6—in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.  相似文献   

8.
Ataxia-telangiectasia mutated (ATM) kinase is a one of the main guardian of genome stability and plays a central role in the DNA damage response (DDR). The deregulation of these pathways is strongly linked to cancer initiation and progression as well as to the development of therapeutic approaches. These observations, along with reports that identify ATM loss of function as an event that may promote tumor initiation and progression, point to ATM as a bona fide tumor suppressor. The identification of ATM as a positive modulator of several signalling networks that sustain tumorigenesis, including oxidative stress, hypoxia, receptor tyrosine kinase and AKT serine-threonine kinase activation, raise the question of whether ATM function in cancer may be more complex. This review aims to give a complete overview on the work of several labs that links ATM to the control of the balance between cell survival, proliferation and death in cancer.  相似文献   

9.
In nonalcoholic steatohepatitis animal models, an increased lipid droplet size in hepatocytes is associated with fibrogenesis. Hepatocytes with large droplet (Ld-MaS) or small droplet (Sd-MaS) macrovesicular steatosis may coexist in the human liver, but the factors associated with the predominance of one type over the other, including hepatic fibrogenic capacity, are unknown. In pre-ischemic liver biopsies from 225 consecutive liver transplant donors, we retrospectively counted hepatocytes with Ld-MaS and Sd-MaS and defined the predominant type of steatosis as involving ≥50% of steatotic hepatocytes. We analyzed a donor Patatin-like phospholipase domain-containing protein 3 (PNPLA3) rs738409 polymorphism, hepatic expression of proteins involved in lipid metabolism by RT-PCR, hepatic stellate cell (HSC) activation by α-SMA immunohistochemistry and, one year after transplantation, histological progression of fibrosis due to Hepatitis C Virus (HCV) recurrence. Seventy-four livers had no steatosis, and there were 98 and 53 with predominant Ld-MaS and Sd-MaS, respectively. In linear regression models, adjusted for many donor variables, the percentage of steatotic hepatocytes affected by Ld-MaS was inversely associated with hepatic expression of Insulin Induced Gene 1 (INSIG-1) and Niemann-Pick C1-Like 1 gene (NPC1L1) and directly with donor PNPLA3 variant M, HSC activation and progression of post-transplant fibrosis. In humans, Ld-MaS formation by hepatocytes is associated with abnormal PNPLA3-mediated lipolysis, downregulation of both the intracellular cholesterol sensor and cholesterol reabsorption from bile and increased hepatic fibrogenesis.  相似文献   

10.
Pancreatic ductal adenocarcinoma (PDAC) has one of the most dismal prognoses of all cancers due to its late manifestation and resistance to current therapies. Accumulating evidence has suggested that the malignant behavior of this cancer is mainly influenced by the associated strongly immunosuppressive, desmoplastic microenvironment and by the relatively low mutational burden. PDAC develops and progresses through a multi-step process. Early in tumorigenesis, cancer cells must evade the effects of cellular senescence, which slows proliferation and promotes the immune-mediated elimination of pre-malignant cells. The role of senescence as a tumor suppressor has been well-established; however, recent evidence has revealed novel pro-tumorigenic paracrine functions of senescent cells towards their microenvironment. Understanding the interactions between tumors and their microenvironment is a growing research field, with evidence having been provided that non-tumoral cells composing the tumor microenvironment (TME) influence tumor proliferation, metabolism, cell death, and therapeutic resistance. Simultaneously, cancer cells shape a tumor-supportive and immunosuppressive environment, influencing both non-tumoral neighboring and distant cells. The overall intention of this review is to provide an overview of the interplay that occurs between senescent and non-senescent cell types and to describe how such interplay may have an impact on PDAC progression. Specifically, the effects and the molecular changes occurring in non-cancerous cells during senescence, and how these may contribute to a tumor-permissive microenvironment, will be discussed. Finally, senescence targeting strategies will be briefly introduced, highlighting their potential in the treatment of PDAC.  相似文献   

11.
A comprehensive proteome map of T-lymphoblastic leukemia cells and its alterations after daunorubicin, doxorubicin and mitoxantrone treatments was monitored and evaluated either by paired comparison with relevant untreated control and using multivariate classification of treated and untreated samples. With the main focus on early time intervals when the influence of apoptosis is minimized, we found significantly different levels of proteins, which corresponded to 1%–2% of the total amount of protein spots detected. According to Gene Ontology classification of biological processes, the highest representation of identified proteins for all three drugs belong to metabolic processes of proteins and nucleic acids and cellular processes, mainly cytoskeleton organisation and ubiquitin-proteasome pathway. Importantly, we observed significant proportion of changes in proteins involved in the generation of precursor metabolites and energy typical for daunorubicin, transport proteins participating in response to doxorubicin and a group of proteins of immune system characterising response to mitoxantrone. Both a paired comparison and the multivariate evaluation of quantitative data revealed daunorubicin as a distinct member of the group of anthracycline/anthracenedione drugs. A combination of identified drug specific protein changes, which may help to explain anti-cancer activity, together with the benefit of blocking activation of adaptive cancer pathways, presents important approaches to improving treatment outcomes in cancer.  相似文献   

12.
Mitochondrial respiratory supercomplex formation requires HIG2A protein, which also has been associated with cell proliferation and cell survival under hypoxia. HIG2A protein localizes in mitochondria and nucleus. DNA methylation and mRNA expression of the HIGD2A gene show significant alterations in several cancers, suggesting a role for HIG2A in cancer biology. The present work aims to understand the dynamics of the HIG2A subcellular localization under cellular stress. We found that HIG2A protein levels increase under oxidative stress. H2O2 shifts HIG2A localization to the mitochondria, while rotenone shifts it to the nucleus. HIG2A protein colocalized at a higher level in the nucleus concerning the mitochondrial network under normoxia and hypoxia (2% O2). Hypoxia (2% O2) significantly increases HIG2A nuclear colocalization in C2C12 cells. In HEK293 cells, chemical hypoxia with CoCl2 (>1% O2) and FCCP mitochondrial uncoupling, the HIG2A protein decreased its nuclear localization and shifted to the mitochondria. This suggests that the HIG2A distribution pattern between the mitochondria and the nucleus depends on stress and cell type. HIG2A protein expression levels increase under cellular stresses such as hypoxia and oxidative stress. Its dynamic distribution between mitochondria and the nucleus in response to stress factors suggests a new communication system between the mitochondria and the nucleus.  相似文献   

13.
The selective antiproliferation to oral cancer cells of Physalis peruviana-derived physapruin A (PHA) is rarely reported. Either drug-induced apoptosis and DNA damage or DNA repair suppression may effectively inhibit cancer cell proliferation. This study examined the selective antiproliferation ability of PHA and explored detailed mechanisms of apoptosis, DNA damage, and repair. During an ATP assay, PHA provided high cytotoxicity to two oral cancer cell lines (CAL 27 and Ca9-22) but no cytotoxicity to two non-malignant oral cells (HGF-1 and SG). This selective antiproliferation of PHA was associated with the selective generation of reactive oxygen species (ROS) in oral cancer cells rather than in non-malignant oral cells, as detected by flow cytometry. Moreover, PHA induced other oxidative stresses in oral cancer cells, such as mitochondrial superoxide generation and mitochondrial membrane potential depletion. PHA also demonstrated selective apoptosis in oral cancer cells rather than non-malignant cells in annexin V/7-aminoactinmycin D and caspase 3/7 activity assays. In flow cytometry and immunofluorescence assays, PHA induced γH2AX expressions and increased the γH2AX foci number of DNA damages in oral cancer cells. In contrast, the mRNA expressions for DNA repair signaling, including homologous recombination (HR) and non-homologous end joining (NHEJ)-associated genes, were inhibited by PHA in oral cancer cells. Moreover, the PHA-induced changes were alleviated by the oxidative stress inhibitor N-acetylcysteine. Therefore, PHA generates selective antiproliferation, oxidative stress, and apoptosis associated with DNA damage induction and DNA repair suppression in oral cancer cells.  相似文献   

14.
The fine-tuning of the physicochemical properties of gold nanoparticles has facilitated the rapid development of multifunctional gold-based nanomaterials with diagnostic, therapeutic, and therapeutic applications. Work on gold nanoparticles is increasingly focusing on their cancer application. This review provides a summary of the main biological effects exerted by gold nanoparticles on cancer cells and highlights some critical factors involved in the interaction process (protein corona, tumor microenvironment, surface functionalization). The review also contains a brief discussion of the application of gold nanoparticles in target discovery.  相似文献   

15.
Hypoxia in non-small cell lung cancer (NSCLC) affects cancer progression, metastasis and metabolism. We previously showed that FAM13A was induced by hypoxia in NSCLC but the biological function of this gene has not been fully elucidated. This study aimed to investigate the role of hypoxia-induced FAM13A in NSCLC progression and metastasis. Lentiviral shRNAs were used for FAM13A gene silencing in NSCLC cell lines (A549, CORL-105). MTS assay, cell tracking VPD540 dye, wound healing assay, invasion assay, BrdU assay and APC Annexin V staining assays were performed to examine cell proliferation ability, migration, invasion and apoptosis rate in NSCLC cells. The results of VPD540 dye and MTS assays showed a significant reduction in cell proliferation after FAM13A knockdown in A549 cells cultured under normal and hypoxia (1% O2) conditions (p < 0.05), while the effect of FAM13A downregulation on CORL-105 cells was observed after 96 h exposition to hypoxia. Moreover, FAM13A inhibition induced S phase cell cycle arrest in A549 cells under hypoxia conditions. Silencing of FAM13A significantly suppressed migration of A549 and CORL-105 cells in both oxygen conditions, especially after 72 and 96 h (p < 0.001 in normoxia, p < 0.01 after hypoxia). It was showed that FAM13A reduction resulted in disruption of the F-actin cytoskeleton altering A549 cell migration. Cell invasion rates were significantly decreased in A549 FAM13A depleted cells compared to controls (p < 0.05), mostly under hypoxia. FAM13A silencing had no effect on apoptosis induction in NSCLC cells. In the present study, we found that FAM13A silencing has a negative effect on proliferation, migration and invasion activity in NSCLC cells in normal and hypoxic conditions. Our data demonstrated that FAM13A depleted post-hypoxic cells have a decreased cell proliferation ability and metastatic potential, which indicates FAM13A as a potential therapeutic target in lung cancer.  相似文献   

16.
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice.  相似文献   

17.
Mesothelin (MSLN) overexpression (OE) is a frequent finding in ovarian carcinomas and increases cell survival and tumor aggressiveness. Since cancer stem cells (CSCs) contribute to pathogenesis, chemoresistance and malignant behavior in ovarian cancer (OC), we hypothesized that MSLN expression could be creating a favorable environment that nurtures CSCs. In this study, we analyzed the expression of MSLN and CSC markers SOX2 and ALDH1 by immunohistochemistry (IHC) in different model systems: primary high-grade serous carcinomas (HGSCs) and OC cell lines, including cell lines that were genetically engineered for MSLN expression by either CRISPR-Cas9-mediated knockout (Δ) or lentivirus-mediated OE. Cell lines, wild type and genetically engineered, were evaluated in 2D and 3D culture conditions and xenografted in nude mice. We observed that MSLN was widely expressed in HGSC, and restricted expression was observed in OC cell lines. In contrast, SOX2 and ALDH1 expression was limited in all tissue and cell models. Most importantly, the expression of CSC markers was independent of MSLN expression, and manipulation of MSLN expression did not affect CSC markers. In conclusion, MSLN expression is not involved in driving the CSC phenotype.  相似文献   

18.
As is known, HOXB9 is an important factor affecting disease progression and overall survival (OS) in cancer. However, its role in colorectal cancer (CRC) remains unclear. We aimed to explore the role of HOXB9 in CRC progression and its association with OS in colorectal liver metastases (CRLM). We analysed differential HOXB9 expression in CRC using the Tissue Cancer Genome Atlas database (TCGA). We modulated HOXB9 expression in vitro to assess its impact on cell proliferation and epithelial-mesenchymal transition (EMT). Lastly, we explored the association of HOXB9 protein expression with OS, using an institutional patient cohort (n = 110) who underwent liver resection for CRLM. Furthermore, HOXB9 was upregulated in TCGA-CRC (n = 644) vs. normal tissue (n = 51) and its expression levels were elevated in KRAS mutations (p < 0.0001). In vitro, HOXB9 overexpression increased cell proliferation (p < 0.001) and upregulated the mRNA expression of EMT markers (VIM, CDH2, ZEB1, ZEB2, SNAI1 and SNAI2) while downregulated CDH1, (p < 0.05 for all comparisons). Conversely, HOXB9 silencing disrupted cell growth (p < 0.0001). High HOXB9 expression (HR = 3.82, 95% CI: 1.59–9.2, p = 0.003) was independently associated with worse OS in CRLM-HOXB9-expressing patients after liver resection. In conclusion, HOXB9 may be associated with worse OS in CRLM and may promote CRC progression, whereas HOXB9 silencing may inhibit CRC growth.  相似文献   

19.
ARPC1B (Actin Related Protein 2/3 Complex Subunit 1B) has been found to be involved in platelet abnormalities of immune-mediated inflammatory disease and eosinophilia. However, its role in prostate cancer (PCa) has not been established. We characterized the role of ARPC1B in PCa invasion and metastasis and investigated its prognosis using in vitro cellular models and PCa clinical data. Higher immunohistochemistry (IHC) expressions of ARPC1B were observed in localized and castrate resistant PCa (CRPC) vs. benign prostate tissue (p < 0.01). Additionally, 47% of patients with grade group 5 (GG) showed high ARPC1B expression vs. other GG patients. Assessing ARPC1B expression in association with two of the common genetic aberrations in PCa (ERG and PTEN) showed significant association to overall and cause-specific survival for combined assessment of ARPC1B and PTEN, and ARPC1B and ERG. Knockdown of ARPC1B impaired the migration and invasion of PC3 and DU145 PCa cells via downregulation of Aurora A kinase (AURKA) and resulted in the arrest of the cells in the G2/M checkpoint of the cell cycle. Additionally, higher ARPC1B expression was observed in stable PC3-ERG cells compared to normal PC3, supporting the association between ERG and ARPC1B. Our findings implicate the role of ARPC1B in PCa invasion and metastasis in association with ERG and further support its prognostic value as a biomarker in association with ERG and PTEN in identifying aggressive phenotypes of PCa cancer.  相似文献   

20.
As hypoxic tumors show resistance to several clinical treatments, photosynthetic microorganisms have been recently suggested as a promising safe alternative for oxygenating the tumor microenvironment. The relationship between organisms and the effect microalgae have on tumors is still largely unknown, evidencing the need for a simple yet representative model for studying photosynthetic tumor oxygenation in a reproducible manner. Here, we present a 3D photosynthetic tumor model composed of human melanoma cells and the microalgae Chlamydomonas reinhardtii, both seeded into a collagen scaffold, which allows for the simultaneous study of both cell types. This work focuses on the biocompatibility and cellular interactions of the two cell types, as well as the study of photosynthetic oxygenation of the tumor cells. It is shown that both cell types are biocompatible with one another at cell culture conditions and that a 10:1 ratio of microalgae to cells meets the metabolic requirement of the tumor cells, producing over twice the required amount of oxygen. This 3D tumor model provides an easy-to-use in vitro resource for analyzing the effects of photosynthetically produced oxygen on a tumor microenvironment, thus opening various potential research avenues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号