首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, epoxy powder as a matrix was combined with different contents of silicon–aluminum–oxygen–nitrogen (SiAlON) nanoparticles using a planetary ball mill. Pure epoxy and nanocomposite powders were applied on the surface of plain carbon steel components by the electrostatic spraying method. Curing of the coatings was done in an oven or microwave for the appropriate time. The coating structure and morphology of the SiAlON nanoparticles were studied by scanning electron microscopy and transmission electron microscopy, respectively. The corrosion properties of the coatings were assessed by immersion, Tafel polarization, and electrochemical impedance spectroscopy tests in 3.5% NaCl solution. The results show that addition of 10 wt % SiAlON nanoparticles markedly increases the corrosion resistance of epoxy coatings. Thus, it can be inferred that the corrosion rate of these coatings is 15 to 18 times lower than that of pure epoxy samples and 8 to 11 times lower than coatings with 20 wt % SiAlON. The higher corrosion resistance of nanocomposite coatings can be attributed to the barrier properties of SiAlON nanoparticles. The tribological performance of the coatings was studied with the pin‐on‐disk test. The results of wear testing show that the samples containing 10 wt % SiAlON provide about five times more wear resistance than pure ones and about two times more than coatings with 20 wt % SiAlON. However, the coefficient of friction for nanocomposite coatings is reduced about 50% compared to the pure sample. Also, the curing process in either regime (oven or microwave) has the same effect on the corrosion and wear properties, and the coatings are completely crosslinked. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43855.  相似文献   

2.
One of the main practical limitations of polymer coatings is dependency of their mechanical and physical properties on the crystallinity of polymer matrix. In this research, the effect of the presence of silica nanoparticles on microhardness, interfacial adhesion strength and tribological behavior of amorphous and semi-crystalline polyether–ether–ketone (PEEK) coatings were examined. The coatings were prepared by a combination of ball milling and electrostatic powder spraying methods. The results showed that the semi-crystalline pure PEEK coating had higher hardness, lower adhesion strength, coefficient of friction (COF) and wear rate than the amorphous one. However, the incorporating of PEEK with surface modified silica nanoparticles led to an increase in the coatings microhardness and interfacial adherence. The wear rates of both the semi-crystalline and amorphous nanocomposite coatings were lower than the pure ones but their COF were slightly higher. It was also found that, compared with the pure coatings, the sensitivity of the mechanical and tribological properties of the nanocomposite coatings to the crystalline structure of the PEEK matrix are less pronounced.  相似文献   

3.
In this study, the effect of annealing temperature and alumina particles on micro-hardness, corrosion, wear, and friction of Ni-P-Al2O3 composites coating is studied. The electroless nickel composite coating with various alumina particle content is deposited on a mild steel substrate. The corrosion behaviour and tribological behaviour (wear and friction) of the composite coated samples are investigated and compared with Ni-P coated samples. The micro-hardness, wear resistance, and corrosion resistance of the composite coating improved significantly after heat treatment (400 °C) and in the presence of alumina particles. The composite coating deposited with alumina particle concentration of 10 g/L in an electroless bath and heat treated at 400 °C shows excellent results compared to Ni-P, as-deposited Ni-P-Al2O3 coating and coatings heat treated at different annealing temperature (200 °C, 300 °C, and 500 °C). Microstructure changes and composition of the composite coatings due to incorporation of alumina particles and heat treatment are studied with the help of SEM (scanning electron microscopy), EDX (energy dispersive X-ray analysis and XRD (X-ray diffraction analysis).  相似文献   

4.
《Ceramics International》2018,44(18):22816-22829
In this study, the effect of the amount of tungsten carbide nanoparticles on the wear and corrosion properties of Ni-tungsten carbide nanocomposite coating which is deposited on steel St37 by Tungsten Inert Gas (TIG) welding was evaluated. For this purpose, surface alloying was firstly conducted on St37 steel by using TIG process with a current of 150 Amps using pure nickel powder and tungsten carbide reinforcement nanoparticles (in 5, 10, 15 and 20 wt%). Then, Transmission Electron Microscopy (TEM), optical microscope, Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), microhardness test by Vickers method, abrasion test by sweep method, and electrochemical tests (potentiodynamic polarization and electrochemical impedance spectroscopy) were used in order to characterize the microstructure and tribological properties of the deposited layers. Microstructural observations showed that the deposited Ni-tungsten carbide nanocomposite coating have a dendritic microstructure with a uniform distribution of tungsten carbide nanoparticles, which reduced the dendritic size by increasing the amount of tungsten carbide nanoparticles. The results of this study showed that by increasing the amount of tungsten carbide nanoparticles in the Ni- tungsten carbide nanocomposite coating, the hardness (from the coating surface to the interface of coating/substrate) and wear resistance increased sharply, but the corrosion resistance decreased. Also, the evaluation of the wear mechanism showed that by increasing the amount of tungsten carbide nanoparticles in Ni-tungsten carbide nanocomposite coatings, the wear mechanism in this coating changed from complex abrasive-sheet like to complex adhesive-oxidation.  相似文献   

5.
Conducting polyaniline (PANI) is being explored as promising material for protection of metals against corrosion. It has the possibility of making smart coatings on metals, which can prevent corrosion even in scratched areas where bare metal surface is exposed to the aggressive environment. However, PANI coatings have poor barrier and mechanical properties. The barrier property of coatings can be enhanced by the addition of appropriate filler particles. Also it has been demonstrated that nanoparticulate fillers give much better barrier properties even at lower concentrations. In this study, the effect of zinc nanoparticles on the anticorrosive property of PANI coating on iron samples has been investigated. The PANI/Zn nanocomposite was synthesized by in situ polymerization of aniline in the presence of Zn nanoparticles. The nanocomposite was characterized by using FTIR, conductivity measurement, cyclic voltammetry, and AFM techniques. Results showed that PANI/Zn nanocomposite coating has improved corrosion protection effect when compared with pure PANI coating. The corrosion current of PANI/Zn coated samples were found to be much lower than that of pure PANI coated samples. The results were referred to the good barrier properties of Zn nanoparticles and improvement in electrochemical corrosion protection of PANI coating in the presence of Zn nanoparticles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
《Ceramics International》2021,47(18):26010-26018
Metal-ceramic nanocomposite coatings have been applied to many industrial applications owing to their remarkable properties such as wear, corrosion and high temperature oxidation resistance than that of metals and alloys in high temperature environments. In this study, YSZ and Ni-YSZ nanocomposite coatings deposited by electron beam physical vapour deposition (EBPVD) for high temperature environments have been investigated. Initially friction and wear behaviour of YSZ coatings deposited at various substrate temperature were studied. Then the effect on wear response of Ni-YSZ nanocomposites with different Ni content were investigated using a ball-on-disc micro tribometer. The structural and tribochemical changes that occurred in the wear tracks of YSZ and Ni-YSZ coatings were investigated using field emission scanning electron microscopy and Raman spectroscopy. The results obtained on sliding wear and friction behaviour of these nanocomposite coatings suggest that 50 wt.% of Ni in YSZ nanocomposite provides good wear resistance behaviour than that of other coatings. Such an improvement in tribomechanical and wear performance of the nanocomposite coating could be attributed to the optimum amount of Ni which promotes the formation of NiO from Ni due to the frictional heat between nanocomposite coating and the sliding counter body in wear track as confirmed by Raman analysis.  相似文献   

7.
Carbon/aramid fabric composite coatings modified with boron nitride of single layer were fabricated through a dip-coating method. The composite coatings were cured with successive heating processes in an oven. The friction and wear properties of those as-prepared coatings were studied on a block-on-ring tester. The obtained results showed that the wear life of the coatings increased obviously after inclusion of boron nitride of single layer; however, the values of friction coefficients of the coatings almost remained constant. The optimal loadings of boron nitride of single layer in our experiments was 5 wt.%, and the wear life of the modified coating increased by ca. 360% compared with that of pristine fabric composite coating. The worn morphology of the sliding surface for both pristine fabric coating and the composite coatings filled with boron nitride of single layer was discussed, and the wear mechanisms were illuminated.  相似文献   

8.
The effects of multiwalled carbon nanotube (MWCNT) content on the adhesion strength and wear and corrosion resistance of the epoxy composite coatings prepared on aluminum alloy (AA) 2024-T3 substrates were evaluated using atomic force microscopy (AFM), blister test, ball-on-disk micro-tribological test and electrochemical impedance spectroscopy (EIS). The adhesion strength of the epoxy composite coatings improved with increasing MWCNT content. Increased MWCNT content also decreased the friction coefficient and increased the wear resistance of the epoxy composite coatings due to improved solid lubricating and rolling effects of the MWCNTs and the improved load bearing capacity of the composite coatings. Finally, EIS indicated that increased MWCNT content increased the coating pore resistance due to a decreased porosity density, which resulted in an increase in the total impedance of the coated samples.  相似文献   

9.
Effect of incorporating SiAlON nanoparticles at different loading levels (0?C12?wt%) on chemical resistance of epoxy coating was investigated by immersion in basic (Na2CO3, pH?=?11) and salty (NaCl 3.5?wt%) (environments at 85?°C for 60?days. Epoxy resin chemical resistant coating grade based on bisphenol A was used with polyamine hardener as a curing agent. In these testes, surface morphology changes of the samples were studied and compared owing to initiation and propagation of cracks. Results indicate an enhancement in the epoxy nanocomposite chemical resistance due to the addition of small fraction of SiAlON nanoparticles. Samples containing 3 and 5?wt% of SiAlON nanopowders were considered as optimum samples compared to all the other samples, because they showed more resistances to initiation and propagation of cracks and lower permeability in chemical environment in comparison with neat resin and other samples. Also, epoxy coatings containing SiAlON nanoparticles were successfully coated on steel substrates and corrosion electrochemical behavior of these nanocomposite coatings were characterized by electrochemical impedance spectroscopy (EIS). The electrochemical monitoring of the coated steel over 35?days of immersion in 3.5?wt% NaCl solution at room temperature suggested the positive role of nanoparticles in improving the corrosion resistance of the coated steel.  相似文献   

10.
A variety of metallic and oxide coatings were deposited under various conditions on 1020 mild steel substrate by conventional plasma spraying. The coating thickness, microhardness, cohesion and adhesion failure loads, friction coefficient, and abrasive wear resistance were evaluated. The coatings were classified as follows, in order of decreasing microhardness and wear resistance: alumina, chromia, 316 stainless steel, Ni-5% Al, elemental aluminum and aluminum-polyester. Wear resistance increased with increasing microhardness and decreasing friction coefficient. The microhardness and wear resistance of high-velocity oxy-fuel (HVOF) diamond jet (DJ)-sprayed aluminum were found to be superior to those of plasma-sprayed aluminum. Plasma or flame-sprayed metallic coatings adhered well to the substrate. The cohesion, adhesion, microhardness, and wear resistance of alumina coatings exceeded those of equally thick chromia coatings.  相似文献   

11.
The wear properties of a textured polyester powder coating with pyrogenic silica nanoparticles addition were evaluated. Raw powders of a commercial, textured polyester organic coating were mixed with low amounts of SiO2 nanoparticles (0.5–3 wt%) using ball milling, a simple and economical method. Nanoparticles were mixed into the powder of thermoset organic coating for 10 min in a two-body planetary ball mill. Particle size distribution of the powder was measured to evaluate the milling effect. The coatings were applied and cured in an industrial installation on aluminum substrates. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) images of the coatings were taken to analyze the homogeneity of the organic coating. Roughness, gloss and color were measured in order to evaluate their appearance. The effect of nanoparticles on abrasive and erosion wear performances was measured. Pin-on-disk wear tests were carried out. Erosion measurements were performed with free fall of sand on the samples, a test based on ASTM D968 standard. The results showed that the milling process provides a good distribution of nanoparticles as no agglomerates were found. The addition of 0.5 wt% silica nanoparticles allows for improvement of the wear resistance of the coatings.  相似文献   

12.
W.X Chen  L.Y Wang  Z.D Xu 《Carbon》2003,41(2):215-222
Ni-P-carbon nanotube (CNT) composite coating and carbon nanotube/copper matrix composites were prepared by electroless plating and powder metallurgy techniques, respectively. The effects of CNTs on the tribological properties of these composites were evaluated. The results demonstrated that the Ni-P-CNT electroless composite coating exhibited higher wear resistance and lower friction coefficient than Ni-P-SiC and Ni-P-graphite composite coatings. After annealing at 673 K for 2 h, the wear resistance of the Ni-P-CNT composite coating was improved. Carbon nanotube/copper matrix composites revealed a lower wear rate and friction coefficient compared with pure copper, and their wear rates and friction coefficients showed a decreasing trend with increasing volume fraction of CNTs within the range from 0 to 12 vol.% due to the effects of the reinforcement and reduced friction of CNTs. The favorable effects of CNTs on the tribological properties are attributed to improved mechanical properties and unique topological structure of the hollow nanotubes.  相似文献   

13.
《Ceramics International》2022,48(15):21305-21316
Sintered carbides are promising materials for surfaces that are exposed to extreme wear. Owing to their high service load, ceramic-based thin films are coated on carbides using different techniques. In this study, non-toxic and cobalt-free powder metallurgy-sintered carbide samples were coated with TiN, TiAlN, CrAlN, and TiSiN ceramic-based thin film coatings by cathodic arc physical vapor deposition. The microstructure (phase formation, coating thickness, surface roughness, and topography), mechanical properties (hardness, modulus of elasticity, and plasticity indices), and tribological properties (nanoscratch and wear behavior) of the thin film coatings were investigated. No cracks or defects were detected in these layers. The ceramic-based ternary nitride thin film coatings exhibited better mechanical performance than the TiN coating. The TiN thin film coating had the highest average surface roughness, which deteriorated its tribological performance. The ternary nitride thin film coatings exhibited high toughness, while the TiN thin film coating exhibited brittle behavior under applied loads when subjected to nanoscratch tests. The wear resistance of the ternary nitride coatings increased by nearly 9–17 times as compared to that of the TiN coating and substrate. Among all the samples investigated, the substrate showed the highest coefficient of friction (COF), while the TiSiN coating exhibited the lowest COF. The TiSiN thin film coating showed improved mechanical and tribological properties as compared to other binary and ternary nitride thin film coatings.  相似文献   

14.
《Ceramics International》2017,43(13):9715-9722
In the present study, hydroxyapatite (HAp) coatings were deposited on Ti-6Al-4V alloy by solution precursor plasma spray (SPPS) and suspension plasma spray (SPS) processes and the properties of the coatings were compared. The feedstock powder for SPS method was prepared by coprecipitation technique and characterized for phase and morphology. The obtained HAp coatings were characterized by X-ray diffractometry, Raman spectroscopy and FT-IR spectroscopy. The biocompatibility of the coatings was evaluated using osteoblast like cells. Both the SPS and SPPS hydroxyapatite coatings exhibited similar crystallinity. Interestingly, the HAp-SPS coating showed marginally higher biocompatibility compared to HAp-SPPS and control samples. The wear and corrosion behavior of these coatings was also studied in Hanks' medium. The hydroxyapatite coating fabricated from SPS technique exhibited better corrosion and wear resistance compared to SPPS coating.  相似文献   

15.
Thick and soft a-C:H:Si coatings containing more than 45% hydrogen (thickness: 25–27 μm, hardness: 6 GPa, Young's Modulus 38 GPa and low ratio of sp3 bonds) were deposited by PACVD with a DC pulsed discharge on nitrided (duplex sample) and non-nitrided austenitic stainless steel (coated sample). After deposition, the chemical, microstructural and tribological properties were studied. Finally, the adhesion and the atmospheric corrosion resistance of a-C:H:Si coatings were also investigated.In pin-on-disk tests, the friction coefficient using an alumina pin of 6 mm in diameter as counterpart, under 0.59 GPa Hertzian pressure was 0.05 for the coated samples and 0.076 for the duplex samples. These values were more than one order of magnitude smaller than the friction coefficient of the nitrided sample without coating, which was around 0.65. In the coated samples, the wear loss could not be measured. In ball-on-disk tests under dry sliding conditions, the coatings were tested under different Hertzian pressures (1.29, 1.44 and 1.57 GPa) using a steel ball with a diameter of 1.5 mm as counterpart. Using a normal load of 9 N, the a-C:H:Si coating of the coated samples was broken and detached thus leading to a coefficient of friction of around 0.429. However, in contrast to that, the friction coefficient of the duplex samples remained stable and reached as maximum a value of 0.208.In abrasive tests, mass loss was undetectable in both duplex and coated samples. Furthermore it could be seen that the a-C:H:Si film showed only some smaller grooves and no severe damage or deformation. On the contrary, severe damage was observed in the only nitrided sample. With respect to adhesion, the critical load to break the coating was higher in the duplex sample (27 N) than in the only coated sample (16.3 N). By chemical analysis using the salt spray fog test, the duplex sample remained clean, but the coated sample failed and presented film delamination as well as general corrosion.  相似文献   

16.
Ni–SiC nanocomposite coatings were prepared on a brass substrate by electrocodeposition. The electrodeposition was carried out by adding the SiC nanoparticles to a nickel-containing bath. Nickel deposition processes were analyzed by cathodic polarization curves, and the plating parameters were determined preliminarily by analyzing the effects of different technological parameters on the deposition process. Then, electrocodeposition processes were carried out with different concentrations of SiC nanoparticles in the bath. The effects of current density, stirring rate, and SiC nanoparticle’s concentration in the plating bath on the hardness of coatings were investigated by microhardness tests. Besides the microhardness tests, wearing tests and corrosion tests were also applied to the coatings with the highest hardness and coatings of pure nickel. The structures and surface morphologies of the coatings were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. The experimental results show that the microhardness of the codeposited coating increases with increasing current density and attains a maximum at the SiC concentration of 6 g/L. The decrease in the microhardness at higher SiC concentrations may be due to agglomeration of nanosized particles in the plating bath. Increasing the stirring speed did not give a better quality deposition as coatings produced at low stirring rates always had higher microhardness values than did those at high stirring rates. Furthermore, the Ni–SiC nanocomposite coatings have lower friction coefficient and better corrosion resistance than those of pure nickel coatings.  相似文献   

17.
《Ceramics International》2016,42(10):12105-12114
An Al2O3/Si3N4 nanocomposite coating was successfully fabricated on commercial aluminum alloy. Hardness measurements, polarization and electrochemical impedance spectroscopy (EIS) were employed to study the mechanical and corrosion behaviors of the coatings. Field-Emission Scanning Electron Microscopy (FE-SEM) equipped with Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) were utilized to characterize the surface morphology and phase composition of the coatings. Also, coatings abrasive wear properties were evaluated with a modified ASTM G105 standard. FE-SEM image, EDS and XRD analysis revealed the presence of Si3N4 in the coating. Furthermore, the results showed hardness of the coatings to increase from 380±50 HV for the anodized layer to 712±36 HV for the composite coatings that were formed in an electrolyte containing 6 gr/lit Si3N4 nanoparticles. Electrochemical measurements indicated that corrosion resistance of the nanocomposite coating significantly increased compared to the anodized coating. In addition, the effect of Si3N4 nanoparticles into the nanocomposite coatings on abrasive wear mechanism and mass loss rate of the coatings was investigated.  相似文献   

18.
《Ceramics International》2015,41(4):5713-5720
Alumina is one of the most versatile coatings applied on tools whose working life is reduced due to high wear rate, high temperature, and highly corrosive environments. High-velocity oxy fuel (HVOF) methods are industrially used to deposit this type of coatings. In this study, the effect of the hydrochloric acid concentration on the wear behavior of an HVOF alumina coating was investigated through room-temperature and 60 °C pin-on-disk wear experiments. The results showed that the corrosive environments up to 5% acid did not meaningfully affect the wear damage rate, as compared to the dry condition, due to a contest between friction coefficient and corrosion damage. Nevertheless, the wear rate significantly increased at higher acid concentrations and higher temperatures, since the corrosion effect prevailed over the friction coefficient effect. Also, the predominant wear mechanism was recognized to be adhesive.  相似文献   

19.
Poly(vinylcarbazole) (PVK) and PVK‐alumina (Al2O3) nanocomposite coatings were electrochemically coated on 316 L stainless steel (SS) substrates for corrosion protection of 316 L SS in 3.5 weight (wt) % NaCl medium. The formation of PVK and incorporation of nanoalumina particles in PVK‐Al2O3 nanocomposite coatings were confirmed from attenuated total reflectance‐infrared spectroscopy (ATR‐IR). Thermal analysis (TG) results showed enhanced thermal stability for the composites relative to PVK. Incorporation of Al2O3 nanoparticles enhanced the micro hardness of PVK coated 316 L SS. The dispersion of alumina nanoparticles was examined via scanning electron microscope (SEM) and tunneling electron microscopy (TEM) and revealed distinct features. The influence of nanoparticles on the barrier properties of PVK and PVK‐Al2O3 nanocomposites was evaluated in aqueous 3.5 wt % NaCl by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The results proved that PVK nanocomposite coatings provided better protection for 316 L SS than PVK coatings. The drastic increase in impedance values is due to the high corrosion resistance offered by the PVK nanocomposite coatings that arises due to the interaction between Al2O3 nanoparticles and PVK. The highest corrosion protection shown by the 2 wt % nano Al2O3 incorporated PVK composite coatings proved enhanced corrosion resistance compared to PVK. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44937.  相似文献   

20.
To enhance the tribological performance of Si3N4/TiC ceramics, MoS2/PTFE composite coatings were deposited on the ceramic substrate through spraying method. The micrographs and basic properties of the MoS2/PTFE coated samples were investigated. Dry sliding friction experiments against WC/Co ball were performed with the coated ceramics and traditional ones. These results showed that the composite coatings could significantly reduce the friction coefficient of ceramics, and protect the substrate from adhesion wear. The primary tribological mechanisms of the coated ceramics were abrasive wear, coating spalling and delamination, and the tribological property was transited from slight wear to serious wear with the increase of load because of the lower surface hardness and shear strength. The possible mechanisms for the effects of MoS2/PTFE composite coatings on the friction performance of ceramics were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号