首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
为了在执行任务期间精确记录数据和稳定的飞行,多旋翼机器人机构需要能够执行长期任务和携带较重的载荷。针对这一问题,对六旋翼机器人关键技术进行了深入的研究。首先,高性能六旋翼无人机的运行需要飞行控制系统,介绍了六旋翼控制系统和本体的设计方法。其次,构建了四旋翼和六旋翼无人机的数学模型,对比了六旋翼与四旋翼控制系统的优缺点。六旋翼飞行器的飞行控制由推力和力矩完成,在俯仰,偏航和横滚分别对螺旋桨的速度进行运动控制。再次,采用模糊自适应PID控制算法设计了一款跟踪控制系统,用一个PID测试控制器进行仿真。并在真实飞行中成功地测试六旋翼机器人,达到了一个理想的效果。而不是使用分析差异,避免跟踪控制器设计过程中的"差异扩展"。最后,仿真结果证明了所提技术的有效性和有效性。  相似文献   

2.
四旋翼作为典型的欠驱动系统,传统情况主要依靠PID控制器进行控制,PID控制器参数对于四旋翼飞行静态性能和动态性能均有较大影响。提出一种基于遗传算法的四旋翼PID控制器参数整定方法,利用遗传算法良好的寻优特性,结合四旋翼自身动力学方程,对传统的四旋翼模糊PID控制器进行参数优化,并通过MATLAB的SIMULINK工具箱仿真验证优化结果的稳定性。  相似文献   

3.
针对四旋翼飞行仿真器系统具有多输入、多输出及多变量等特点,设计了一套基于四旋翼飞行仿真器的PID神经元网络控制器。首先建立四旋翼飞行仿真器系统模型,然后以四旋翼飞行仿真器为控制平台,并以MATLAB/Simulink软件为实验平台,搭建PID控制器和PID神经元网络控制器模型,并分别使用两种控制方法进行实时飞行仿真实验。最后实验结果表明,相比PID控制,PID神经元网络控制方法对四旋翼飞行仿真器的调节时间更短、超调量更小,具有更优的控制性能。  相似文献   

4.
针对四旋翼机器人关键技术进行了深入的研究,首先分析了四旋翼机构特征及其主要的用途。其次,根据其旋翼采用正交安装的结构特征进行了运动控制分析,实现了悬停、前后、水平、俯仰和翻转运动等。再次,建立了四旋翼机器人的非线性动力学数学模型,实现了无人机实时力矩补偿控制。最后,采用模糊自适应PID控制算法设计位姿控制器,提出了一种基于动态数学模型的位姿控制方法。经过实验,将运动控制和动力学算法应用到四旋翼机器人,进行了空载位姿跟踪和悬停等实验,同时采集了姿态转角。通过实验证明了无人机运动控制算法、动力学算法和模糊自适应控制器的稳定性、准确性和鲁棒性。  相似文献   

5.
介绍了一种基于四旋翼驱动的两栖移动机器人。首先简要介绍了该机器人的机械结构与控制及传感系统,并介绍了机器人由四旋翼机构提供动力,并通过对4个旋翼的转动速度和方向进行配置,从而实现在空中飞行或在地面滚动的原理。然后,采用四元数方法对该两栖机器人进行了姿态求解,在此基础上,基于PID算法开发了机器人的飞行控制算法,并进行了相应的仿真。最后通过实验验证了该两栖机器人能够实现预期的两种运动模式,即空中飞行和地面滚动。该机器人提高了传统只具有单一运动模式的移动机器人的环境适应能力。  相似文献   

6.
针对液压推进型水下机器人的定向控制问题,对液压推进器的比例滞环、机器人多自由度运动模型、控制器设计等方面进行了研究,提出了液压推进器转速PI控制与ROV定向PID控制相结合的控制方法;在Matlab/Simulink中建立了海马号水下机器人的六自由度动力学模型,并设计了带螺旋桨转速PI闭环的定向控制器;该定向控制器包括控制手柄输入、定向PID控制器、推力分配及合成矩阵、螺旋桨转速PI控制器等,利用仿真试验模型对控制器进行了抗干扰测试。仿真结果表明:所提出的复合PID控制器可显著减小由于液压推进器推力不一致引起的定向角度控制误差,具有比常规PID控制器更好的控制性能。  相似文献   

7.
智能轮式机器人广泛应用于现代社会。智能轮式机器人运动系统的实时、有效控制是智能轮式机器人执行任务的必要保障。建立了智能轮式机器人运动系统的动力学理论模型,并推导了对应的离散式运动系统的控制模型。针对运动系统数字控制的特点,提出了一种结合模糊推理的离散模糊自适应PID控制器,基于运动系统控制输出的误差等数据,通过模糊推理在线整理PID控制器参数。以智能轮式机器人控制模型为被控对象,对于离散模糊自适应PID控制器和常规PID控制器进行了仿真实验,实验结果表明离散模糊自适应PID控制器在智能轮式机器人运动系统的控制中具有更佳的控制性能。  相似文献   

8.
为解决并联机器人高度非线性、强耦合、数学模型复杂的问题,针对交流伺服电机驱动的并联机器人,在模型不确定情况下提出了一种针对2-DOF并联机器人的智能控制方法,设计了一个二输入的模糊控制器,该控制方法不需要前向运动学的求解。通过模糊控制器对PID参数进行实时整定,基于MATLAB进行动态仿真,仿真结果表明:模糊PID在轨迹跟综和带负荷运动的稳定性方面比线性PID具有更好的控制效果,可实现并联机器人的高精度实时控制。  相似文献   

9.
为了提高四旋翼飞行器在地震灾难现场等内部狭窄空间中的通过性,提出了一种新型的螺旋桨可倾转的四旋翼飞行器。该四旋翼飞行器在传统四旋翼飞行器基础上增加了一个倾转自由度,实现四个螺旋桨同步、同向倾转,进而可以改变飞行器构型来适应狭窄飞行空间。建立了倾转变形四旋翼飞行器动力学数学模型,在Simulink/SimMechanics仿真环境中搭建了四旋翼飞行器动力学模型,设计了串级PID控制器,实现了四旋翼飞行器在倾转状态下稳定飞行,分析了飞行器穿越狭窄空间的飞行动作及轨迹跟踪情况。仿真结果表明倾转变形四旋翼飞行器构型设计和仿真系统是可行的。  相似文献   

10.
各种限制条件阻碍了工业机器人运动控制器性能的提高。例如,摩擦力和动态干扰限制了简单的PID控制器性能。通过解决非线性L2增益衰减问题,提出一种基于非线性H∞鲁棒PID控制器并且对这个控制器的稳定性、鲁棒性和性能调节方法进行了分析。最后给出了对两连杆刚性机器人的仿真结果,验证了控制效果。  相似文献   

11.
机器人在复杂环境中运动时,其关节角位移跟踪容易受到外界波形干扰,导致角位移跟踪误差较大,造成控制系统稳定性下降。对此,建立三关节机器人简图模型,给出了机器人动力学方程式,采用多电机并行驱动机器人关节角位移运动;采用模糊规则建立模糊PID控制器,利用模糊论域在线调节PID控制参数,保持控制系统的稳定性。采用Matlab软件对多电机机器人模糊PID控制效果进行仿真,结果显示:在大扰动环境中,采用模糊PID控制器,可以提高机器人关节角位移跟踪精度,保持多电机驱动机器人关节运动的稳定性。  相似文献   

12.
四旋翼飞行器的结构简单以及对飞行环境要求低的优势,使其应用极其广泛。四旋翼飞行器的姿态控制是决定飞行性能的关键,目前,应用较成熟的控制方法仍为PID控制,但是四旋翼飞行器的姿态之间存在非线性的耦合,使得控制参数整定有难度,PID控制器对其姿态的调整会出现较大的超调量,或者较长的调节时间。该文综合了模糊控制和PID控制各自优势,设计了模糊自整定PID控制器,能够实现参数的自整定。仿真结果显示,所设计的控制器能够有效抑制系统超调量,提高响应速度。  相似文献   

13.
在水下机器人领域,水动力一直作为研究重点,其中机器人水下运动过程中黏性流场阻力分析尤为关键。文中以碟形四旋翼水下机器人作为研究对象,分析其在自由起降及精确着底运动过程中所受黏性流场阻力变化规律。首先对碟形四旋翼水下机器人进行运动方程建模,采用计算流体力学CFD方法,利用Fluent软件对其在黏性流场内运动进行多组仿真实验。实验结果证明该机器人运动速度与黏性流场阻力关系符合运动规律,对后续机器人结构优化及样机开发具有重要指导意义。  相似文献   

14.
针对小型四旋翼飞行器姿态控制问题,设计了一种新型非线性PID姿态控制器。针对传统PID的不足,通过引入两个跟踪微分器以及误差反馈的非线性组合构成非线性PID,并结合简化的小型四旋翼飞行器数学模型,提出了一种基于新型非线性PID姿态控制方法。仿真结果表明,所设计的控制器具有较强的鲁棒性、抗干扰性以及良好的滤波性能,系统具有良好的动态和稳态性能。由于保留了传统PID优点,设计简单,对实际工程具有较大的指导价值。  相似文献   

15.
《机械科学与技术》2017,(12):1859-1865
针对传统PID在四旋翼飞行器轨迹跟踪控制方面存在的精度不高、鲁棒性差等不足,提出了一种滑模PID算法。并根据建立的四旋翼欧拉-庞卡莱动力学模型,设计滑模PID轨迹跟踪控制器。与传统PID算法相比,该算法通过选取PID滑模面,有效地提高系统的响应速度以及抗干扰的能力。通过MATLAB/Simulink,在不同条件下,分别对滑模PID和传统PID算法设计的控制系统进行仿真。仿真结果表明,该算法能够更为精确地跟踪期望轨迹,同时具有响应时间短,超调量小,鲁棒性强等优点。  相似文献   

16.
为了提高2自由度机器人控制系统响应速度,降低其输出误差,设计改进模糊PID控制器,并对2自由度机器人角位移跟踪效果进行仿真验证。给出多连杆机器人的动力学模型,设计模糊PID控制器。利用粒子的迭代搜索原理对模糊PID控制器参数进行优化,从而得到模糊PID控制器参数的最优值,使机器人控制系统具有更好的抗干扰能力。以2自由度机器人为例,利用Matlab软件对机器人角位移和转矩进行仿真,在不同环境中比较优化前和优化后的输出效果。结果显示:采用改进粒子群优化算法优化PID控制器参数,2自由度机器人控制效果明显优于模糊PID控制器。2自由度机器人优化后的模糊PID控制器,不仅响应速度快,而且抗干扰能力强。  相似文献   

17.
为了遂行灾害救援和野外侦查等复杂作业任务,本文设计了一款将四足步行机器人和四旋翼飞行器有机组合的陆空两栖机器人。该机器人既能根据作业需求进行结构分离,以实现陆、空多领域的侦查,同时四旋翼飞行器又能自由起落在四足步行机器人躯体上进行组合作业,为多用途侦查提供了更多的可能性。四足步行机器人足端轨迹采用贝塞尔曲线,机器人机身质心规划成按直线运动,可保证机器人步行运动的流畅性、稳定性与灵活性。仿真验证的结果表明该组合式陆空两栖机器人运动特性十分优异,具有推广应用价值。  相似文献   

18.
当机器人运行于高速条件下时,整个系统将处于一种不稳定的状态。对高速运动条件下的机器人动力学进行了深入的研究。首先,对研制的6自由度搬运机器人平台硬件结构进行了介绍。在此基础上,对高速运动的机器人的动力学表达式式进行了分析,得到了造成机器人高速运动动力学效应的状态参量—机器人的关节角θ、关节角速度θ觶与关节角加速度θ咬,结合机器人样机的PID主控制器,定性探索了机器人的动力学参量与PID控制器参量间的关系规律,为后续的控制器设计提供依据。  相似文献   

19.
针对四旋翼在室外飞行时易受到气流干扰,难以实现精准控制的问题,首先对四旋翼在室外飞行时的风场环境进行建模,将风场影响添加到四旋翼动力模型当中;其次,设计了自适应扩展卡尔曼滤波器(Adaptive extended kalman filter,AEKF),通过实时调整噪声协方差的自适应因子提高飞行器姿态数据的滤波精度,并将数据反馈给PID位置控制器对飞行器进行控制。实验表明,建立的模型能够有效反映四旋翼在风场环境下的运动规律,采用PID与AEKF相结合的控制策略可以提高系统的抗干扰能力,实现在风场环境下对四旋翼的精准控制。  相似文献   

20.
针对机器人传统PID控制系统响应速度慢、输出不稳定性等问题,采用改进PID控制器,引入改进粒子群算法,将自适应加速器参数插入粒子群算法的原始速度更新公式,从而加快算法的收敛速度.采用改进粒子群算法优化分数阶PID控制器,将改进后的PID控制器用于五连杆机器人电机转速响应分析.仿真曲线表明:采用传统PID控制器,响应时间为0.5s,上下波动次数较多;采用改进PID控制器,响应时间为0.2s,上下波动次数较少.五连杆机器人采用改进粒子群算法优化分数阶PID控制器,能够快速地提高机器人控制系统运动的稳定性,降低输出误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号