首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alumina particle reinforced 6061 aluminum matrix composites (Al2O3p/6061Al) have excellent physical and chemical properties than those of a traditional metal; however, their poor machinability lead to worse surface quality and serious cutting tool wear. In this study, wire electrical discharge machining (WEDM) is adopted in machining Al2O3p/6061Al composite. In the experiments, machining parameters of pulse-on time were changed to explore their effects on machining performance, including the cutting speed, the width of slit and surface roughness. Moreover, the wire electrode is easily broken during the machining Al2O3p/6061Al composite, so this work comprehensively investigates into the locations of the broken wire and the reason of wire breaking.The experimental results indicate that the cutting speed (material removal rate), the surface roughness and the width of the slit of cutting test material significantly depend on volume fraction of reinforcement (Al2O3 particles). Furthermore, bands on the machined surface for cutting 20 vol.% Al2O3p/6061Al composite are easily formed, basically due to some embedded reinforcing Al2O3 particles on the surface of 6061 aluminum matrix, interrupt the machining process. Test results reveal that in machining Al2O3p/6061Al composites a very low wire tension, a high flushing rate and a high wire speed are required to prevent wire breakage; an appropriate servo voltage, a short pulse-on time, and a short pulse-off time, which are normally associated with a high cutting speed, have little effect on the surface roughness.  相似文献   

2.
This study investigates the feasibility and optimization of a rotary EDM with ball burnishing for inspecting the machinability of Al2O3/6061Al composite using the Taguchi method. Three ZrO2 balls attached as additional components behind the electrode tool offer immediate burnishing following EDM. Three observed values (machining rate, surface roughness and improvement of surface roughness) are adopted to verify the optimization of the machining technique. In addition, six independent parameters are chosen as variables for evaluating the Taguchi method; these variables are categorized into two groups: (1) electrical parameters, i.e. peak current, pulse duration and non-load voltage; and (2) non-electrical parameters, i.e. flushing pressure of dielectric, rotational speed of electrode and residual height of hump. Experimental results indicated a feasible technique for applying rotary EDM with ball burnishing in machining the Al2O3/6061 composite. Optimization of this technique is also discussed.  相似文献   

3.
Abrasive enhanced electrochemical slurry-jet machining (ESJM) is presented as a new approach to the micro-machining of metals using a combination of abrasive slurry-jet machining (ASJM) and electrochemical jet machining (ECJM). A novel ESJM prototype was developed to generate a charged slurry jet consisting of a mixture of Al2O3 abrasive particles and an electrolytic solution of NaCl and NaNO3. A DC potential of 30 V was applied between the nozzle and specimen. A series of micro-channels were machined in Stellite 12 using ASJM, ECJM and ESJM processes to investigate the relative effects of erosion and anodic dissolution on the material removal rate and surface finish in the combined process of ESJM. The results illustrated that the ESJM process results in significantly greater target mass loss rate than the separate erosion and corrosion processes. The magnitude of the synergistic effect on the rate of mass loss was found to vary from positive to negative as the erosion component increased with increasing particle kinetic energy (jet pressure) and particle concentration. The roughness of the channels machined using ESJM was between that obtained with ASJM and ECJM. The roughness decreased as the erosion component of the total mass loss increased.  相似文献   

4.
The present study investigates the relationship of processes parameters of pulsed Nd:YAG laser-turning operation for production of micro-groove on cylindrical workpiece of ceramic material. A microprocessor-based work holding device has been developed to provide the rotational motion of cylindrical work pieces for micro-turning operation. Laser turning of micro-grooves on ceramics is highly demanded in the present industry because of its wide and potential uses in various fields such as automobile, aerospace and bio-medical engineering applications, etc. Experiments have been conducted on laser micro-grooving of aluminum oxide (Al2O3). The central composite second-order rotatable design (CCD) had been utilized to plan the experiments and response surface methodology was employed for developing empirical models. Analysis on machining characteristics of pulsed Nd:YAG laser micro-grooving operation was made based on the developed models. In this study, lamp current, pulse frequency, pulse width, assist air pressure and cutting speed of work piece are considered as laser machining process parameters. The process performances such as upper deviation (Yuw), lower deviation (Ylw) and depth (Yd) characteristics of laser-turned micro-grooves produced on cylindrical work piece made of Al2O3 were evaluated. Analysis of variance (ANOVA) test had also been carried out to check the adequacy of the developed regression empirical models. The observed optimal process parameter settings are lamp current of 22.517 A, pulse frequency of 1.477 kHz, pulse width of 2.394% of duty cycle, cutting speed of 10.4283 rpm and assist air pressure of 1.3 kgf/cm2 for achieving minimum upper deviation, lower deviation and depth of laser-turned micro-grooves, and finally the results were experimentally verified. From the analysis, it was found that proper control of the process parameters lead to achieve minimum upper deviation, lower deviation and depth of laser-turned micro-grooves produced on cylindrical workpiece of Al2O3.  相似文献   

5.
Electric discharge machining (EDM) has been proven as an alternate process for machining complex and intricate shapes from the conductive ceramic composites. The performance and reliability of electrical discharge machined ceramic composite components are influenced by strength degradation due to EDM-induced damage. The success of electric discharge machined components in real applications relies on the understanding of material removal mechanisms and the relationship between the EDM parameters and formation of surface and subsurface damages. This paper presents a detailed investigation of machining characteristics, surface integrity and material removal mechanisms of advanced ceramic composite Al2O3–SiCw–TiC with EDM. The surface and subsurface damages have also been assessed and characterized using scanning electron microscopy (SEM). The results provide valuable insight into the dependence of damage and the mechanisms of material removal on EDM conditions.  相似文献   

6.
The characteristic evaluation of aluminum oxide (Al2O3)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. Al2O3 composites with different CNT concentrations were synthesized. The electrical characteristic of Al2O3/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% Al2O3 (volume fraction). In the machining accuracy, many tangles of CNT in Al2O3/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of Al2O3/CNTs hybrid composites.  相似文献   

7.
GFRP的套孔钻削过程中极易产生分层、撕裂等加工损伤,其与轴向钻削力直接相关。为提高GFRP的制孔质量,采用新型金刚石薄壁套料钻,结合低频轴向振动加工技术,建立单颗磨粒的运动学模型和动力学模型,试验研究GFRP制孔中的轴向力变化规律,并对套料钻的烧焦概率、自动落料率进行分析。结果表明:对比常规钻削,低频振动钻削时的瞬时进给量和轴向力比常规钻削时的大,且随着振幅的增加,轴向力也随之增大;低频振动钻削和常规钻削时的轴向力皆随进给速度的增加而增大,随主轴转速的升高而降低。同时,低频振动钻削时磨粒间断性地参与钻削,大大降低了套料钻的烧焦概率,提高了其自动落料率,自动落料率高达88.24%,可实现GFRP的连续批量制孔。  相似文献   

8.
In this study, a special experimental setup of EDSG using EDM and surface grinding machine has been developed in the laboratory to investigate the effect of seven input parameters namely tool polarity, peak current, pulse on-time, pulse off-time, rotational speed, abrasive particle size, and abrasive particle concentration on material removal rate (MRR) as performance measure of the process. The novelty of the present research work is that successful efforts have been made to machine the 6061Al/Al2O3p 10% metal matrix composites (MMC) by composite tool itself. The copper-based composite tool electrodes were fabricated by powder metallurgy route with different sizes of abrasives of silicon carbide, while 6061Al/Al2O3p 10% MMC were fabricated through stir-casting process. The research outcome will identify the important parameters and their effect on MRR of 6061Al/Al2O3p 10% composite in EDSG. The experimental results reveal that tool polarity, peak current, and rotational speed are the most influential parameters that affect MRR in EDSG process. The micro-structural and morphological analysis of machined surfaces has also been carried out to analyze the surface topography. It has been concluded that the abrasive particles substantially improves the MRR after removing the resolidified layer from the machined surface.  相似文献   

9.
This paper investigates the micro-EDM behaviour of an Al3O2 and ZrO2 based electrically conductive ceramic composites. The influence of the generator parameters on material removal rate, relative tool wear, surface quality and material removal mechanism is investigated towards the definition of suitable micro-EDM technologies. The study is based on a design of experiments, supported by a fundamental investigation of the generator parameters. Similar variations trends to the machining of steel are observed within the investigated process window, for exception of the tool wear performance. The developed EDM technologies are finally validated through the fabrication of industrial demonstrators.  相似文献   

10.
Al2O3/LaPO4 composites of varying compositions were drilled on an ultrasonic machine with low carbon steel tools (solid and hollow), in order to evaluate the response to machining. Vickers hardness for different compositions indicate critical load dependency on LaPO4 content. Significance of LaPO4 content on material hardness highlights the critical content for good sinterability. X-ray diffraction was done to study the phase content. Acoustic emission (AE) signals emitted by the work piece during machining was also analyzed. Ultrascan inspection was carried out to check for any internal defects. The data presented in the paper illustrate the significance of LaPO4 addition on machinability of Al2O3/LaPO4 composites in terms of MRR, AE response and hole geometry and associated defects.  相似文献   

11.
This paper evaluates laser-assisted machining (LAM) as an economically viable process for manufacturing precision aluminum oxide ceramic parts. Because it is locally heated by an intense laser source prior to material removal, LAM leads to higher material removal rates, as well as improved control of workpiece properties and geometry. To assess the feasibility of the LAM process and better understand its governing physical phenomena, experiments were conducted to obtain different measures of surface roughness for Al2O3 workpieces machined by laser-assisted turning using a Nd:YAG laser.The experimental results were analyzed using the Taguchi method, which facilitated identification of optimum machining conditions. The findings indicate that rotational speed, with a contribution percentage as high as 42.68%, had the most dominant effect on LAM system performance, followed by feed, depth of cut, and pulsed frequency. LAM's most important advantage is its ability to produce much better workpiece surface quality than does conventional machining, together with larger material removal rates (MRR) and moderate tool wear.  相似文献   

12.
Nanopowders of Fe0.54Cr0.18Al0.26Si0.016 and Al2O3 were synthesized from Fe2O3, Cr, Si, and Al powders using high-energy ball milling. A high-density nanocrystalline 3.7Fe0.54Cr0.18Al0.26Si0.016-Al2O3 composite was consolidated with mechanically synthesized powders of Al2O3 and 3.7Fe0.54Cr0.18Al0.26Si0.016-Al2O3 through a pulsed current activated sintering (PCAS) method within 1 min. The hardness of the composite and the average grain sizes of Al2O3 and Fe0.54Cr0.18Al0.26Si0.016 were investigated.  相似文献   

13.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

14.
基于微细孔电火花加工中观测到的“腰鼓”现象,进行了微细倒锥孔的在线加工参数调控电火花加工工艺的研究.实验研究了开路电压、进给深度、变压深度、放电电容等加工参数对微孔加工孔形的影响.通过对工艺参数的优化选择,加工得到出入口直径平均相差18.6 μm、锥度为1.16°的倒锥孔,可用于柴油发动机倒锥喷孔的加工.进一步实验了工...  相似文献   

15.
Owing to the reduced tool area and poor flushing conditions in deep holes, tool wear in micro-electrical discharge machining (EDM) is more significant than in macro-EDM. In micro-EDM drilling, the z-axis of the tool position is monitored as machining progresses. However, due to significant electrode wear, the machined hole depth is not identical to the programmed depth of the hole, and thus this will result in geometrical inaccuracy. This paper presents a new micro-EDM drilling method, in which the material removal volume is estimated as machining progresses. Compensation length is calculated and adjustment is made repeatedly along the tool path until the targeted material removal volume is reached. A real-time material removal volume estimator is developed based on the theoretical electro-thermal model, number of discharge pulse and pulse discrimination system. Under various energy input and machining depth settings, the experimental and estimated results are found to be in satisfactory agreement with average error lower than 14.3% for stainless steel, titanium, and nickel alloy work materials. The proposed drilling method can compensate the tool wear and produce more accurate micro-holes as compared to other methods. Experimental work also shows that the proposed method is more reliable as compared to the uniform wear method. In drilling micro-holes of 900 μm depth, the depth error can be reduced to 4% using the proposed method.  相似文献   

16.
微小孔的电解加工工艺研究   总被引:1,自引:0,他引:1  
为了研究微小孔的电解加工工艺,采用在线加工的微细电极和超短脉冲电压,以及复合电解液电解加工微小孔.通过在线加工电极,避免了电极的二次装夹,提高了加工孔时的定位精度.实验中,分析了不同种类的电解液及其浓度、加工电压以及脉冲宽度对微小孔加工精度的影响.实验结果表明,添加络合剂的钝化电解液既能溶解阳极的电解产物,避免发生短路,提高了加工的稳定性,又不会增大加工间隙.而超短脉冲电压能明显减小微小孔加工的侧面间隙,并保证孔直径的一致性.  相似文献   

17.
For the first time the possibility of electrochemical micromachining (ECMM) of a Zr-based bulk metallic glass (BMG) using a micro-tool electrode technique is reported. It is demonstrated that the choice of the electrolyte chemistry is substantial for a successful ECMM processing. For the bulk glassy Zr59Ti3Cu20Al10Ni8 alloy a concentrated aqueous NaNO3 standard machining solution is not suitable due to formation of thick and dense corrosion product layers which hinder the machining of structures with high aspect ratio. On the other hand, a commercial methanolic HClO4 solution is shown to be very promising. In the first experiments with this electrolyte micro-hole structures were machined with aspect ratios of about 1 at depths of ~40 μm. The effect of process parameters such as pulse voltage and pulse length was investigated and their influence on the machined structure morphology is established. In a first approach the potential and challenges of this electrochemical micromachining technique for microforming of multi-component bulk metallic glass surfaces will be discussed.  相似文献   

18.
Recent study and development activity in the field of precision ultrasonic machining (USM) process has focused on the ceramic (Al2O3). This paper first analyzes the USM process, mechanism, dynamics, and trends. It then discusses, in detail, the USM process applications on the ceramic (Al2O3).  相似文献   

19.
研究了Zr-Si-N氢终端金刚石(H-diamond)绝缘栅场效应晶体管(MISFET)在有无Al2O3保护层情况下的电学特性。分别采用原子层沉积法(ALD)和射频溅射法(RF)制备了Al2O3保护层和Zr-Si-N栅介质层。MISFETs的转移特性曲线表明,其栅阈值电压在有无Al2O3保护的情况下从-2.5 V变化到3 V,表明器件从常关型转换为常开型。输出和转移特性曲线揭示了氧化铝的存在保护了氢终端,使其免受磁控溅射过程的损伤。  相似文献   

20.
In this work it was studied the influence of micrometric SiC and Al2O3 ceramic particles on the electrodeposition of ZnNi films from a moderately acid solution. At the same time, the possibilities of obtainment of ZnNi-SiC and ZnNi-Al2O3 electrocomposites were demonstrated. In the first part, it will be analyzed the effects of SiC and Al2O3 on the individual electrodeposition curves for Zn, Ni and on ZnNi films and on the hydrogen evolution reaction (HER). Both, SiC and Al2O3, causes the current densities in the electrodeposition curves of Zn, Ni and ZnNi to be increased. This was attributed to an additional mass-transport component to the electrode surface given by the flux of impinging particles to it. This makes the deposited quantities to be increased during the potentiodynamic sweeps. Regarding HER, in the blank solution, on a pure Zn substrate, SiC causes an increase on HER and Al2O3 has negligible effects on it. In the second part, it will be shown that it was possible to obtain ZnNi-SiC and ZnNi-Al2O3 electrocomposites. The compositional analysis of the films showed that the ZnNi electrodeposition is anomalous for the whole analyzed range and for all the systems. However, it was verified that, while, Al2O3 has practically no effects on the [Ni/Zn] ratio of the metal matrix, compared to pure ZnNi films, SiC promotes a decrease in this relation, directly related to its concentration in the solution. SiC augmented the anomalous behavior. Considering the high Zn content in electrodeposited ZnNi there would be the favoring of HER by SiC in these cases. There would be more favorable conditions for the formation of insoluble Zn(OH)2 at the electrode surface. The hindering in the Ni2+ reduction will be more effective and could explain the decrease in [Ni/Zn].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号