共查询到20条相似文献,搜索用时 265 毫秒
1.
根据小波分析的多分辨率特性,重点分析了多分辨率特性在脑电诊断中的应用.首先确定小波函数和分解层数,进行小波变换,对脑电高频低频进行小波变换重构信号,接着基于在不同尺度下伪迹和异常波不会完全相同的原理,将脑电信号分解到各个尺度上.把分解后的脑电信号输入神经网络进行识别,最终输出异常波的识别结果. 相似文献
2.
基于神经网络和小波分解的目标信号检测方法研究 总被引:4,自引:1,他引:4
将小波分解和神经网络相结合,应用于高海况、低信噪比条件下水中目标信号的特征提取中。文中首先对信号进行多尺度小波分解,利用目标信号功率主要集中在低频部分的特点,提取在不同频率带内信号的能量作为特征,然后利用人工神经网络对目标信号进行检测。在此基础上,通过不同浪级情况下海洋水压力场的仿真信号数据,对某型目标舰船的水压力信号进行了检测计算.验证了该方法的有效性,达到了在高海况、低信噪比条件下,目标信号检测率比较高、虚警率比较低的效果。 相似文献
3.
针对P300脑电信号信噪比低、随机性强及个体差异性大等问题,本文提出了一种将经验模态分解(EMD)和小波包分解(WP)相结合的滤波方法,并使用改进的卷积神经网络(CNN)对脑电信号进行分类识别。首先利用经验模态分解算法将原始脑电信号分解成若干个本征模函数(IMF)分量,并对每个分量进行频谱分析以去除主频段在0~30Hz以外的分量;然后,对保留的IMF分量进行小波包分解,根据P300电位的有效时频信息,选择合适的频段进行重构,再将重构后的各个本征模函数叠加,得到经过滤波后的脑电信号;最后,设计合适的卷积神经网络结构,对P300信号进行分类识别。本文使用国际BCI竞赛数据集对提出的方法进行验证。实验结果表明,两名被试的分类准确率分别为97.78%、95.56%,说明该方法能够有效的改善P300信号的识别效果(相比其他方法至少提升了2.78%,1.39%),为进一步提高基于P300信号的脑机接口系统的性能提供了一种新的有效的途径。 相似文献
4.
基于小波包分解和遗传神经网络对正常脑电和癫痫脑电进行识别。通过分析脑电数据找出信号特征;利用一维离散小波包分解提取含有识别特征的脑电信号频率段,并以脑电各频段的相对能量作为信号特征;然后建立基于遗传算法优化的BP网络,用于对癫痫脑电识别。实验结果表明,该方法可以有效提取信号特征,并且对信号进行准确的识别。 相似文献
5.
6.
7.
针对液压电磁式驱动制动系统中卡缸故障的非平稳时变信号特征,提出了用小波包能量法提取故障特征向量,采用神经网络进行安全监测的方法.通过在某一提升机盘式制动器中的应用表明:该方法能准确地监测制动系统是否发生卡缸故障,有效地避免了事故的发生. 相似文献
8.
9.
针对容栅传感器检测的转动轴扭振信号掺杂的环境噪声干扰和自身的电磁噪声干扰使得信噪比低、微弱信号难提取的问题,提出了一种基于小波-EEMD-Adaline自适应线性神经网络去噪方法.该方法对信号进行小波、EEMD、Adaline网络消噪处理,采用三级去噪、噪声过滤、对消来逼近原始信号.用典型加噪超声信号、Doppler信号、Block信号对该方法进行有效性验证,与EEMD、基于小波分解的EEMD去噪效果相比较.实验结果表明,后两种方法信号去噪的SNR提升小(均不到20),而本文方法SNR(RMSE)提升(减小)明显,对于9 dB的Doppler信号SNR提升达90,RMSE从1.038 5降至0.009 5.对容栅电路实测大噪声微弱信号去噪,结果表明,该方法去噪性能更优,去噪后信号光滑性好,波动稳定性强. 相似文献
10.
基于小波分析和概率神经网络的心音诊断研究 总被引:2,自引:0,他引:2
心音对大多数心血管疾病具有极高的临床诊断价值,对心音信号进行分析有助于临床上对心脏疾病的诊断。为了利用计算机智能分析心音信号,提出利用多尺度小波分解消除信号中的噪声,从各频带提取特征值,用概率神经网络(PNN)来进行心音信号的自动分析诊断。用Matlab仿真的方法测试了5种不同类型心音信号的分类情况,结果表明该方法可行。 相似文献
11.
研究了热轧带钢自动厚度控制(AGC)的鲁棒控制问题.为了消除轧制过程中其它变量对厚度控制精度的影响,提出了一种基于H∞/H2的多变量约束控制策略.首先,采用高阶未建模扰动对控制输入传函的H∞范数作为鲁棒性能指标,张力与活套等约束量对输出评价信号传函的H2范数作为LQG性能指标,建立了受约束的厚度控制模型.其次,设计了H∞/H2状态反馈鲁棒控制器,把受约束的AGC控制转化为系统在模型摄动与外界扰动下满足一定性能指标的鲁棒控制问题.最后,仿真结果表明,所设计的H∞/H2控制器具有良好的鲁棒控制特性. 相似文献
12.
Electrophysiological recordings are considered a reliable method of assessing a person's alertness. Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness. As EEG signals are non-stationary, the conventional method of frequency analysis is not highly successful in recognition of alertness level. This paper deals with a novel method of analysis of EEG signals using wavelet transform, and classification using ANN. EEG signals were decomposed into the frequency sub-bands using wavelet transform and a set of statistical features was extracted from the sub-bands to represent the distribution of wavelet coefficients. Then these statistical features were used as an input to an ANN with three discrete outputs: alert, drowsy and sleep. The error back-propagation neural network is selected as a classifier to discriminate the alertness level of a subject. EEG signals were obtained from 30 healthy subjects. The group consisted of 14 females and 16 males with ages ranging from 18 to 65 years and a mean age of 33.5 years, and a Body Mass Index (BMI) of 32.4±7.3 kg/m2. Alertness level and classification properties of ANN were tested using the data recorded in 12 healthy subjects, whereby the EEG recordings were not used to train the ANN. The statistics were used as a measure of potential applicability of the ANN. The accuracy of the ANN was 95±3% alert, 93±4% drowsy and 92±5% sleep. 相似文献
13.
采用小波神经网络对网络流量数据的时间序列进行建模与预测。针对传统小波神经网络训练算法的不足,提出了自适应量子粒子优化算法——AQPSO,用于训练小波神经网络,优化网络参数,建立基于AQPSO算法优化的小波网络预测模型。实验结果表明,该模型对网络流量的短期预测是有效可行的,并具有良好的收敛性和稳定性。 相似文献
14.
Ahmad Banakar Mohammad Fazle Azeem 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2008,12(8):789-808
From the well-known advantages and valuable features of wavelets when used in neural network, two type of networks (i.e.,
SWNN and MWNN) have been proposed. These networks are single hidden layer network. Each neuron in the hidden layer is comprised
of wavelet and sigmoidal activation functions. First model is derived from adding the outputs of wavelet and sigmoidal activation
functions, while in the second model outputs of wavelet and sigmoidal activation function are multiplied together. Using these
proposed networks in consequent part of the neuro-fuzzy model, which result summation wavelet neuro-fuzzy and multiplication
wavelet neuro-fuzzy models, are also proposed. Different types of wavelet function are tested with proposed networks and fuzzy
models on four different types of examples. Convergence of the learning process is also guaranteed by performing stability
analysis using Lyapunov function. 相似文献
15.
Elif Derya Übeyli 《Digital Signal Processing》2009,19(2):297-308
This paper illustrates the use of combined neural network model to guide model selection for classification of electroencephalogram (EEG) signals. The EEG signals were decomposed into time–frequency representations using discrete wavelet transform and statistical features were calculated to depict their distribution. The first-level networks were implemented for the EEG signals classification using the statistical features as inputs. To improve diagnostic accuracy, the second-level networks were trained using the outputs of the first-level networks as input data. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified with the accuracy of 94.83% by the combined neural network. The combined neural network model achieved accuracy rates which were higher than that of the stand-alone neural network model. 相似文献
16.
高述涛 《计算机工程与应用》2012,48(21):83-88
网络流量数据中含有大量噪声,对网络流量预测精度产生不利影响,为此,提出一种小波消噪和神经网络相融合的网络流量混沌预测模型。采用小波技术对网络流量数据进行消噪处理,采用关联维数确定BP神经网络输入变量个数,采用BP神经网络建立网络流量预测模型。结果表明,与消噪前比,小波消噪和神经网络模型更能准确刻画网络流量的变化趋势,有效提高了网络流量的预测精度,为非线性预测问题提供了一种新的研究思路。 相似文献
17.
轻微认知衰退是阿尔茨海默病的早期阶段,而利用脑电信号进行轻微认知衰退的特征提取与分类是诊断轻微认知衰退的重要方法。在基于脑电人工智能轻微认知衰退自动检测技术中,现有研究只提取脑电波信号中的某一个特征或简单地拼接多个特征,这会导致这些方法并不能较好地考虑特征之间的相关性,并且会引发维度灾难的问题;提出了一种基于卷积神经网络的轻微认知衰退静息态脑电数据自动检测算法,通过提取脑电的功率谱及脑网络特征,并通过矩阵运算的方式对这两种特征进行融合,利用卷积神经网络对融合后的特征进行分类。该方法在上海某医院采集的数据集上获得较高的准确率;此外,通过输入特征集的不同子集,该方法找到了对轻微认知衰退最有贡献的几组特征,从而还具有一定的可解释性。在本数据集上证明了功率脑网络对于轻微认知衰退自动诊断的优势。 相似文献
18.
论述了小波神经网络的系统结构及算法,并根据齿轮振动信号的频域变化特征,提取特征向量作为输入,利用小波神经网络建立特征向量与故障模式之间的映射关系,建立了基于该算法的齿轮故障诊断模型。仿真结果表明:与传统的BP神经网络相比,该模型显著缩短了训练时间。该小波神经网络进行机械故障诊断是有效的。 相似文献
19.