首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
压水堆驱动线落棒历程计算   总被引:1,自引:1,他引:0  
控制棒落棒性能验证是核电厂安全分析的重要部分,研制驱动线落棒历程计算程序有利于验证和改进控制棒驱动线设计。基于驱动线结构特点,分析运动组件的受力情况并进行分解,选择理论或数值方法逐一求取各分力的瞬态值,从而建立驱动线落棒历程的循环步进计算程序。利用秦山核电二期工程驱动线落棒性能试验数据对理论模型和程序计算结果进行对比验证。结果证明:所建立的驱动线落棒历程计算程序适用于压水堆驱动线系统,能正确地对运动组件落棒受力与运动历程进行模拟。  相似文献   

2.
燃料组件在堆芯内经历长期辐照后易产生弯曲形变,影响控制棒的安全落棒,因此亟需研究变形通道下控制棒落棒行为影响机制。通过数值模拟手段对导向管发生弯曲变形后的落棒行为规律进行分析研究,利用刚柔耦合方法分别计算直型、C型、S型导向管内的落棒行为,分析整个落棒行程、速度、加速度、沿程碰撞力随时间的变化情况,对比直型和2种不同变形通道对落棒行为的影响。研究结果表明,刚柔耦合方法可以较好地模拟变形通道下的落棒行为,C型落棒未发生卡滞,S型落棒卡滞于第2道弯折处。本研究将有助于为弯曲变形导致落棒卡涩问题的极限弯曲阈值提供判断依据,为工程设计提供参考。   相似文献   

3.
紧急停堆的落棒时间对反应堆安全至关重要。为适应华龙一号堆型的新型燃料组件设计,中国核动力研究设计院研制出一款落棒时间分析软件CRAC。采用一维流体力学公式结合经验机械阻力模型的方法,构建出CRAC软件理论框架,通过软件开发标准流程完成设计编码,并利用落棒试验数据开展了CRAC软件的验证。结果表明软件计算精度与保守性能满足华龙一号堆型安全停堆时间准则分析的需求。  相似文献   

4.
Applicability of the modified Neutron Source Multiplication (NSM) method with extraction of the fundamental mode to subcriticality measurement has been proposed. Following the feasibility verification in the previous study based on numerical analyses, its applicability has been proven in a more realistic situation; in a withdrawal sequence of control rod banks during the PWR startup. Subcriticalities with various control rod insertion configurations were estimated based on the modified NSM method. The subcriticality could be evaluated with a good accuracy even with the mockup experiment where any special treatments for accurate measurement were not taken into account and furthermore the insensitivity of measured signals by reactivity changes and their large fluctuations were seen.

Based on this fact, we further investigated a feasibility to use neutron count rate data obtained during the control rod drop testing, which is carried out before the reactor physics tests at hot zero power condition. When it is proven that these data could be used for the estimation of each control rod worth, the following reactor physics tests could be performed with the advanced knowledge of each control rod worth and procedures for detailed control rod worth measurement could be simplified or eliminated from the reactor physics tests.  相似文献   

5.
控制棒组件缓冲结构是控制棒的关键部件,本文针对一种既定结构的控制棒组件缓冲结构,对控制棒组件落棒缓冲效果开展了数值仿真计算分析.通过理论分析建立了一定的简化模型和控制方程进行数值仿真分析计算,获得了控制棒组件落棒冲击力的规律.本文的计算方法及结果可以指导控制棒组件缓冲结构的设计.  相似文献   

6.
为验证超临界压水堆改进型控制棒组件能否实现预期水力缓冲功能,采用计算流体力学分析软件Fluent、基于6自由度(6DOF)模型的铺层法动网格技术,对其落棒过程进行研究,分析了控制棒组件落棒时间和落棒末速度。结果表明:相比改进前的设计,改进型控制棒组件落棒时间虽有所增大,但仍然能满足安全要求;落棒末速度大幅下降,落棒冲击力降低,从而能够保证控制棒组件及燃料组件的结构完整性。改进型控制棒组件的设计能够实现预期的水力缓冲功能,可用于超临界压水堆堆芯设计。  相似文献   

7.
钍基熔盐堆核能系统项目是中科院先导科技专项之一,其战略性目标是研发第四代熔盐冷却裂变反应堆核能系统。基于10 MWt固态燃料熔盐堆的系统设计,开发了适用于球床式反应堆系统的安全分析软件,并以高温气冷堆为对象对程序计算结果的准确性进行了验证。基于该软件程序,对固态燃料球床堆(Thorium Molten Salt Reactor-Solid Fuel,TMSR-SF)控制棒失控抽出事故进行了分析计算,研究了不同停堆限值及各停堆信号对事故的影响。计算结果表明,超功率停堆限值越高,出口温度限值越大,信号延迟时间越长,反应堆停堆越晚,堆芯功率和燃料最高温度越高。在TMSR-SF控制棒失控抽出事故下,燃料最高温度不超过860°C,远低于1 600°C的熔化温度限值。  相似文献   

8.
During operation of nuclear power reactors, reactivity initiated accidents can take place such as a control rod drop. If this occurs, the reactivity increases significantly and leads to an enhancement in power, fuel temperature and damage of reactor eventually. Exact assessment of these accidents depends on the hydrodynamic information. In this research, it is tried to simulate the unsteady flow field around the control rod for a pressurized water reactor power plant. In order to simulate the flow field around the control rod inside the guide tube, averaged Navier–Stokes equations accompanied by the layering dynamic mesh strategy have been used. The information exchange between the two computational stationary and moving grids, the computational grid around the control rod and the grid next to the guide tube, has been taken place through the interface. It was concluded that the time duration of control rod to reach the bottom of the core depends on the leakage. It was also observed that the velocity and acceleration of the control rod would be reduced by decreasing leakage flow rate and in certain leakages, the acceleration of the control rod approaches zero due to equilibrium conditions. During this research, a correlation based on the achieved data was proposed which would provide useful information on the relation between the leakage and the time for control rod to reach the bottom of the core.  相似文献   

9.
Earthquake vibrations cause large forces and stresses that can significantly increase the scram time required for safe shutdown of a nuclear reactor. The horizontal deflections of the reactor system components cause impact between the control rods and their guide tubes and ducts. The resulting frictional forces, in addition to other operational forces, delay the travel time of the control rods. To obtain seismic responses of the various reactor system components (for which a linear response spectrum analysis is considered inadequate) and to predict the control rod drop time, a non-linear seismic time history analysis is required. Nonlinearities occur due to the clearances or gaps between various components. When the relative motion of adjacent components is large enough to close the gaps, impact takes place with large impact accelerations and forces.This paper presents the analysis and results for a liquid metal fast rector system which was analyzed for both scram times and seismic responses such as bending moments, accelerations and forces. The reactor system was represented with a one-dimensional nonlinear mathematical model with two degrees of freedom per node (translational and rotational). The model was developed to incorporate as many reactor components as possible without exceeding computer limitations. It consists of 12 reactor components with a total of 71 nodes, 69 beam and pin-jointed elements and 27 gap elements. The gap elements were defined by their clearances, impact spring constants and impact damping constants based on a 50% co-efficient of restitution.The horizontal excitation input to the model was the response of the containment building at the location of the reactor vessel supports. It consists of a 10 sec safe shutdown eathquake (SSE) acceleration-time history at 0.005 sec intervals and with a maximum acceleration of 0.408 g. The analysis was performed with two Westinghouse special purpose computer programs. The first program calculated the reactor system seismic responses and stored the impact forces on tape. The impact forces on the control rod driveline were converted into vertical frictional forces by multiplying them by a coefficient of friction, and then these were used by the second program for the scram time determination.The results give time history plots of various seismic responses, and plots of scram times as a function of control rod travel distance for the most critical scram initiation times. The total scram time considering the effects of the earthquake was still acceptable but about four times longer than that calculated without the eathquake. The bending moment and shear force responses were used as input for the structural analysis (stresses, deflections, fatigue) of the various components, in combination with the other applicable loading conditions.  相似文献   

10.
Security in nuclear power plants demands severe limitations of the maximal drop time of rod cluster control assemblies. In February 1995, several assemblies of the Chinese plant in Daya Bay failed to comply with these requirements. Electricité De France undertook a research program to get a better insight of this problem since the plant has been built by French and also because the French new four-loops N4 reactor was equipped with the same guide tubes. This paper is limited to a numerical study of the influence of the pressure forces applied to control rods and due to flow circulation through the guide tubes. After a validation test case, a first calculation has been carried out on a simplified N4 guide tube. The sensitivity of the pressure forces to transverse flow and to modifications of the geometry has been determined. The program has been extended to guide tubes used in 1300-MW reactors and similar computations have been done. To make simulations more representative, a global computation of the flow in the whole upper internals plenum (UIP) will be achieved to provide accurate boundary conditions for local calculations with better resolution.  相似文献   

11.
《Annals of Nuclear Energy》2002,29(5):585-593
Reactivity initiated accidents (RIA) and design basis transients are one of the most important aspects related to nuclear power reactor safety. These events are re-evaluated whenever core alterations (modifications) are made as part of the nuclear safety analysis performed to a new design. These modifications usually include, but are not limited to, power upgrades, longer cycles, new fuel assembly and control rod designs, etc. The results obtained are compared with pre-established bounding analysis values to see if the new core design fulfills the requirements of safety constraints imposed on the design. The control rod drop accident (CRDA) is the design basis transient for the reactivity events of BWR technology. The CRDA is a very localized event depending on the control rod insertion position and the fuel assemblies surrounding the control rod falling from the core. A numerical benchmark was developed based on the CRDA RIA design basis accident to further asses the performance of coupled 3D neutron kinetics/thermal-hydraulics codes. The CRDA in a BWR is a mostly neutronic driven event. This benchmark is based on a real operating nuclear power plant — unit 1 of the Laguna Verde (LV1) nuclear power plant (NPP). The definition of the benchmark is presented briefly together with the benchmark specifications. Some of the cross-sections were modified in order to make the maximum control rod worth greater than one dollar. The transient is initiated at steady-state by dropping the control rod with maximum worth at full speed. The “Laguna Verde” (LV1) BWR CRDA transient benchmark is calculated using two coupled codes: TRAC-BF1/NEM and TRAC-BF1/ENTRÉE. Neutron kinetics and thermal hydraulics models were developed for both codes. Comparison of the obtained results is presented along with some discussion of the sensitivity of results to some modeling assumptions.  相似文献   

12.
The NEXUS project is an effort to merge and modernize the methods employed in Westinghouse PWR and BWR steady-state reactor physics codes. The NEXUS system relies on a once-through nodal cross-section generation methodology with an innovative and efficient technique for pin power recovery. The pin power methodology overcomes a well-known limitation of existing methodologies, namely the incapacity to properly account for heterogeneity changes due to the depletion environment. The so-called control rod history problem where control rods are repeatedly inserted and withdrawn during core depletion is a good example of such a case. In addition to the control rod history impact on pin power distributions, the insertion of control rods during extended periods leads to significant control rod depletion that affects the reactivity worth of the control rods which in turn can have a significant impact on pin powers. The importance of accurately predicting pin powers, combined with the need to adequately estimate the reactivity worth and nuclear end of life of control rods in BWRs and in generation III+ PWRs, has motivated the development of a novel control rod depletion model. This methodology and its numerical qualification, initially for PWR application only, is the topic of this paper. The focus is on describing the salient features of the model and on illustrating its performance by means of numerical experiments. It is shown that together with the NEXUS pin power recovery model, the control rod depletion methodology accurately predicts the reactivity feedback from repeated control rod insertions in a PWR core.  相似文献   

13.
Key factors affecting the rod-to-grid fretting-wear risk of fuel assemblies operated in pressurized water reactors (PWR) are evaluated. The analysis is part of a comprehensive approach to predict fretting-wear risk based on the fuel assembly operating conditions. The assembly wear damage is determined by a non-linear vibration model of the nuclear fuel rod exposed to a turbulent flow. The study evaluates the sensitivity of the wear damage to the grid support forces, fuel rod-to-grid gap size, assembly grids misalignment, rod structural damping and stiffness, assembly bow shape, friction coefficients and turbulence force spectrum. The results of the numerical simulations show that the grid cell clearance and the turbulence forces are key factors in the wear process. Since a good correlation exists between these two parameters and the assembly location in the core, it is recommended to include consideration of the wear risk minimization as an additional criterion for the design of the core loading pattern.  相似文献   

14.
One aspect of the Westinghouse AP1000™1 reactor design is the reduction in the number of major components and simplification in manufacturing. One design change relative to current Westinghouse reactors of similar size is that AP1000 reactor vessel has two nozzles/hot legs instead of three. With regard to fuel performance, this design difference creates a different flow field in the reactor vessel upper plenum. The flow exiting from the core and entering the upper plenum must turn toward one of the two outlet nozzles and flow laterally around numerous control rod guide tubes and support columns. Also, below the upper plenum are the upper core plate and the top core region of the 157 fuel assemblies and 69 guidetube assemblies.To determine how the lateral flow in the top of the core and upper plenum compares to the current reactors a CFD model of the flow in the upper portion of the AP1000 reactor vessel was created.Before detailed CFD simulations of the flow in the entire upper plenum and top core regions were performed, conducting local simulations for smaller sections of the domain provided crucial and detailed physical aspects of the flow. These sub-domain models were used to perform mesh sensitivities and to assess what geometrical details may be eliminated from the larger model in order to reduce mesh size and computational requirements. In this paper, CFD analysis is presented for two subdomain models: the top core region and control rod guide tube region. These models are chosen for simulation because guide tube and top core region (including top grid, top nozzle, and hold-down device) are the major components of upper plenum effecting the flow patterns and pressure distribution.The top core region, corresponding to ¼ of fuel assembly, includes components as upper part of the fuel assemblies (top grid, fuel rods, top nozzle), core component hold-down devices, and upper core plates. These components distribute the core flow to different sections of guidetube regions. Mesh sensitivity studies have been conducted for each individual part in order to determine the proper geometrical simplifications. Pressure drop measurement data are compared with the predicted CFD results and act as a guideline for the mesh selection.The guidetube region includes control rod guidetubes themselves, adjacent support columns and open regions. In this study, two models of subdomains are analyzed: (1) a ¼ section of one control rod guide tube by itself and (2) a representative unit cell containing two ¼ sections of adjacent control rod guide tubes and one ¼ section of a neighboring support column.Predicted flow rates at each of the outflow locations in conjunction with results from the mesh sensitivity studies provide guidance on (1) what geometry to preserve or remove, (2) what geometry can be simplified to reduce the required mesh, and (3) an estimate of the total mesh required to model the entire upper plenum and top fuel domain.The commercial CFD code STAR-CCM+ is employed to generate the computational mesh, to solve the Reynolds-averaged Navier–Stokes equations for incompressible flow with a Realizable k? turbulence model, and to post-process the results.  相似文献   

15.
堆芯入口流量分配研究是新型反应堆设计过程中一项重要的工程验证实验,其结果能为反应堆的热工水力及安全分析提供数据支撑。本文针对中国工程试验堆(CENTER),采用缩比模型开展了堆芯入口流量分配特性实验研究,在不同工况下获得了模拟燃料组件、铍/铝组件、钴靶组件及控制棒导向管内的流量分配因子。实验结果表明:在本文研究的工况范围中,堆芯中大部分冷却剂流过模拟燃料组件,同类型模拟组件间的流量分配较均匀,最大流量相对偏差在±4%以内。实验入口总流量对流量分配特性几乎没有影响。  相似文献   

16.
The control rod drop analysis is very important for safety analysis. For seismic and loss of coolant accident event, the control rod assemblies shall be capable of traveling from a fully withdrawn position to 90% insertion without any blockage and within specified time and displacement limits. The analysis has been executed by analytical method using in-house code. In this method, several field data are needed. These data are obtained from nuclear, thermal–hydraulic and mechanical design groups, peculiar codes, those work groups need to cooperate together.Following the enhancement of a computer and development of the multi-physics analysis code, a new method for the control rod drop analysis is proposed by finite element method. This analysis model incorporates the structure and fluid parts, termed as a fluid and structure interaction (FSI). Because a control rod is submerged inside a guide tube of a fuel assembly, the FSI boundary condition is applied. In this model, it is assumed that the fluid is incompressible laminar flow. The structures are modeled with the solid elements because there is no deformation due to the fluid flow. The analysis two-dimensional plane model is created in the analysis with considering an axi-symmetric geometry. Therefore, the proposed analysis model will be very simple and the design data from other fields will be unnecessary.The analysis results are compared with those of the in-house code, which have been used for a commercial design. After validation, it is found that the present analysis gives a useful tool in the design of the control rod and fuel assembly.  相似文献   

17.
通过对模块式小型堆(ACP100)反应堆结构特点进行分析,提出了开式管束型长行程连续导向的控制棒导向组件设计。对导向组件进行力学分析、流场分析以及试验验证,结果表明导向组件摩擦力小、抗变形能力强、抗流场扰动强、运行可靠,满足ACP100的功能要求。   相似文献   

18.
由于控制棒抽出引起堆芯内反应性失控增加,从而导致核功率剧增的事故定义为一组控制棒组件抽出事故。这种瞬态可能是反应堆控制系统或棒控系统失灵引起的。多普勒负反应性反馈效应能在保护动作延迟的时间内将功率限制在可接受的水平。该事故中,燃料棒表面可能发生偏离泡核沸腾(departure from nucleate boiling,简称DNB),导致燃料元件包壳烧毁;燃料芯块也可能发生熔化,对包壳产生不利影响。文章对岭澳混合堆芯和提高富集度论证次临界或低功率启动工况下提棒事故进行了分析。分析结果表明,事故瞬态中不会发生燃料芯块熔化或燃料元件包壳烧毁,可以保证燃料元件的完整性,燃料设计满足限制准则。  相似文献   

19.
An advanced loop-type sodium-cooled fast reactor has been developed by the Japan Atomic Energy Agency. The upper internal structure (UIS) above the core is a key component where control rod guide tubes are housed. A radial slit is set in the UIS to simplify the fuel-handling system and to reduce the reactor vessel diameter. A high-velocity upward flow is formed in the UIS slit. This slit jet influences thermal hydraulic issues in the reactor vessel. A water experiment was carried out to understand the flow field in the UIS, which is composed of the control rod guide tubes and several horizontal perforated plates with a slit. A refractive index matching method was applied to visualize the flow in such a complex geometry. Velocity measurement using particle image velocimetry showed that the velocity in the UIS slit was accelerated by the multiple slits and kept at a high value at the mid-height of the reactor upper plenum. A numerical simulation was carried out for this complex geometry of the UIS to obtain an adequate simulation method. A comparison between the experimental and analytical velocity profiles showed that the numerical simulation is highly applicable.  相似文献   

20.
三维六角形组件压水堆堆芯燃料管理计算及程序系统研究   总被引:2,自引:0,他引:2  
王涛  谢仲生  程和平  张少泓  张颖 《核动力工程》2003,24(6):497-500,513
介绍所研制的WWER型压水堆堆芯燃料管理计算程序系统TPFAP-H/CSIM-H,六角形组件均匀化计算程序TPFAP-H是在压水堆正方形组件程序TPFAP的基础上,采用穿透概率法与响应矩阵方法相结合计算六角形组件内中子能谱分布,并考虑六角形栅元特点改造开发而成的CSIM-H是以先进六角形节块扩散程序为基础.参照SIMULATE程序功能而研制的物理-热工水力耦合的三维六角形节块PWR堆芯燃料管理程序两者通过接口程序LINK连接起来,可以考虑燃耗,功率、慢化剂密度变化.控制棒、氙等参数的多种反馈效应对IAEA的WWER-1000型Kalinin核电厂基准问题的校算的结果表明,临界硼浓度、功率和燃耗分布等结果与国际各研究机构的结果吻合良好,偏差均在工程要求之内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号