首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The beta chain (p75) of the interleukin-2 (IL-2) receptor (IL-2R) is expressed on up to 5-7% of fetal thymocytes on day 16 of gestation, declining thereafter to a minute proportion of less than 1% around birth, and of 1-2% of adult thymocytes. A significant part of fetal IL-2R beta+ thymocytes are gamma delta cells. The precursor-progeny relationships of fetal IL-2R beta+ thymocytes to the alpha beta T cell lineage have not been previously studied, nor has their position within the developmental sequence been determined. Here we show that IL-2R beta is expressed on a subset of very immature cells, along with high amounts of Pgp1 and Fc gamma RII/III, partially preceding the expression of intracellular CD3 epsilon. IL-2-R beta disappears before expression of IL-2R alpha. IL-2R beta+ cells, purified by sorting on day 15 of gestation, efficiently reconstituted fetal thymic lobes depleted of lymphoid cells by treatment with desoxyguanosine. They developed into T cell receptor (TCR) alpha beta+, TCR gamma delta+, and CD4/CD8 double- and single-positive cells in similar proportions as did sorted IL-2R alpha+ day 15 fetal thymocytes. These data suggest that IL-2R beta expression marks a short period of very early thymocyte development, perhaps immediately after entry into the thymus.  相似文献   

2.
gp130 is a common signal-transducing receptor component for the interleukin-6 (IL-6) family of cytokines. To investigate the expression of gp130 in T-cell subsets and its regulation, anti-murine gp130 monoclonal antibody (MoAb) was used for flow cytometric analysis. In normal mice, gp130 was differentially expressed in thymocyte and splenic T-cell subpopulations defined by CD4/CD8 expression. In aged MRL/lpr mice, although gp130 expression was detectable in splenic CD4(+) or CD8(+) T cells, gp130 expression was significantly downregulated. Because serum levels of IL-6 and soluble IL-6 receptor (sIL-6R) are elevated in these mice, we examined the possibility that the downregulation of gp130 expression on splenic T cells might be produced in response to continuous activation of gp130 by high levels of serum IL-6. In transgenic mice overexpressing IL-6, gp130 expression in the splenic T cells was significantly decreased. After stimulation with IL-6 in vitro, the level of gp130 on CD4(+) or CD8(+) splenic T cells from normal mice was significantly decreased. These results suggest that the expression of gp130 in splenic T cells could be downregulated by the IL-6 stimulation under physiological or pathological circumstances.  相似文献   

3.
Interleukin-17   总被引:1,自引:0,他引:1  
The particular interest of IL-17, a homodimeric cytokine of about 32 kDa, is the strict requirement for an activation signal to induce its expression from a rather restricted set of cells, human memory T cells or mouse alpha beta TCR+CD4-CD8- thymocytes. In contrast with the tightly controlled expression pattern of this gene, the IL-17 receptor, a novel cytokine receptor, is ubiquitously distributed but apparently more abundant in spleen and kidney. In addition to its capture by the T lymphotropic Herpesvirus Saimiri (HVS), this cytokine is inducing the secretion of IL-6, IL-8, PGE2, MCP-1 and G-CSF by adherent cells like fibroblasts, keratinocytes, epithelial and endothelial cells. IL-17 is also able to induce ICAM-1 surface expression, proliferation of T cells, and growth and differentiation of CD34+ human progenitors into neutrophils when cocultured in presence of irradiated fibroblasts. In vitro, IL-17 synergizes with other proinflammatory signals like TNF alpha for GM-CSF induction, and with CD40-ligand for IL-6, IL-8, RANTES and MCP-1 secretion from kidney epithelial cells. In vivo, injection of IL-17 induces a neutrophilia, except in IL-6-KO mice. The involvement of IL-17 in rejection of kidney graft has also been demonstrated. The role of this T cell secreted factor in various inflammatory processes is presently investigated.  相似文献   

4.
The IL-2R is composed of three chains: IL-2R alpha, IL-2R beta, and IL-2R gamma. In mice, IL-2Ra is critical and determines IL-2 binding to the tripartite IL-2R complex. To extend our previous studies, which demonstrated that IL-2 regulates IL-2R alpha expression in vitro, we have analyzed expression in IL-2-deficient mice in vivo. As in control animals, CD4- CD8- thymocytes and bone marrow-derived B220+ pre-B cells were IL-2R alpha positive. In contrast, activated lymph node and splenic CD4 T cells (CD4+ CD69+) were found to be IL-2R alpha negative, whereas approximately 20% of the same cell populations from the MLR/lpr strain, which also accumulate large numbers of CD4-activated T cells in the presence of intact IL-2, retained expression. A similar pattern of IL-2R alpha expression was found among splenic CD8 cells from IL-2(-/-) and IL-2(+/-) animals. These findings demonstrate that in primary lymphoid organs, IL-2 is not directly involved in IL-2R alpha expression. However, at the level of mature lymphocytes, and more specifically CD4 T cells, IL-2 remains in vivo, as in vitro, the most critical cytokine controlling both IL-2R alpha expression and sensitivity to IL-2.  相似文献   

5.
Effector functions of CD4-CD8- double negative (DN) alpha beta TCR+ cells were examined. Among mouse DN alpha beta TCR+ thymocytes, NK1.1+ cells expressing a canonical V alpha 14/J alpha 281 TCR but not NK1.1- cells produce IL-4 upon TCR cross-linking and IFN-gamma upon cross-linking of NK1.1 as well as TCR. Production of IL-4 but not IFN-gamma from DN alpha beta TCR+NK1.1+ cells was markedly suppressed by IL-2. Whereas V alpha 14/J alpha 281 TCR+ cells express NK1.1+, these cells are not the precursor of DN alpha beta TCR+NK1.1+CD16+B220+ large granular lymphocytes (LGL). IL-2 induces rapid proliferation and generation of NK1.1+ LGL from DN alpha beta TCR+NK1.1- but not from DN alpha beta TCR+NK1.1+ cells. LGL cells exhibit NK activity and produce IFN-gamma but not IL-4 upon cross-linking of surface TCR or NK1.1 molecules. In contrast to IL-2, IL-7 does not induce LGL cells or NK activity from DN alpha beta TCR+NK1.1- cells but induces the ability to produce high levels of IL-4 upon TCR cross-linking. Our results show that DN alpha beta TCR+ T cells have several distinct subpopulations, and that IL-2 and IL-7 differentially regulate the functions of DN alpha beta TCR+ T cells by inducing different types of effector cells.  相似文献   

6.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

7.
T cell repertoire selection processes involve intracellular signaling events generated through the TCR. The CD4 and CD8 coreceptor molecules can act as positive regulators of TCR signal transduction during these developmental processes. In this report, we have used TCR transgenic mice to determine whether TCR signaling can be modulated by the CD8 coreceptor molecule. These mice express on the majority of their T cells a TCR specific for the male (H-Y) Ag presented by the H-2Db MHC class I molecule. We show that CD4-CD8-, but not CD4-CD8+, thymocytes expressing the H-Y TCR responded with high intracellular calcium fluxes to TCR/CD3 stimulation without extensive receptor cross-linking. To examine the effects of CD8 expression on intracellular signaling responses in the CD4-CD8- cells, the H-Y TCR transgenic mice were mated with transgenic mice that constitutively expressed the CD8 alpha molecule on all T cells. The expression of the CD8 alpha alpha homodimer in the CD4-CD8-thymocytes led to impaired intracellular calcium responses and less efficient protein tyrosine phosphorylation of substrates after TCR engagement. In male H-2b H-Y transgenic mice, the majority of thymocytes have been deleted with the surviving cells expressing a high density of the transgenic TCR and exhibiting either a CD4-CD8- or CD4-CD8lo phenotype. It has been postulated that these cells escaped deletion by down-regulating the CD8 molecule. In the H-Y TCR/CD8 alpha double transgenic male mice, the CD4-CD8lo cells were completely eliminated as a result of CD8 alpha expression. However, the CD4-CD8- T cells were not deleted despite normal levels of the CD8 alpha transgene expression. These results suggest that the CD4-CD8- thymocytes may not be susceptible to the same deletional mechanisms as other thymocytes expressing TCR-alpha beta.  相似文献   

8.
Galectin-1 is an endogenous lectin expressed by thymic and lymph node stromal cells at sites of Ag presentation and T cell death during normal development. It is known to have immunomodulatory activity in vivo and can induce apoptosis in thymocytes and activated T cells (1-3). Here we demonstrate that galectin-1 stimulation cooperates with TCR engagement to induce apoptosis, but antagonizes TCR-induced IL-2 production and proliferation in a murine T cell hybridoma and freshly isolated mouse thymocytes, respectively. Although CD4+ CD8+ double positive cells are the primary thymic subpopulation susceptible to galectin-1 treatment alone, concomitant CD3 engagement and galectin-1 stimulation broaden susceptible thymocyte subpopulations to include a subset of each CD4- CD8-, CD4+ CD8+, CD4- CD8+, and CD4+ CD8- subpopulations. Furthermore, CD3 engagement cooperates with suboptimal galectin-1 stimulation to enhance cell death in the CD4+ CD8+ subpopulation. Galectin-1 stimulation is shown to synergize with TCR engagement to dramatically and specifically enhance extracellular signal-regulated kinase-2 (ERK-2) activation, though it does not uniformly enhance TCR-induced tyrosine phosphorylation. Unlike TCR-induced IL-2 production, TCR/galectin-1-induced apoptosis is not modulated by the expression of kinase inactive or constitutively activated Lck. These data support a role for galectin-1 as a potent modulator of TCR signals and functions and indicate that individual TCR-induced signals can be independently modulated to specifically affect distinct TCR functions.  相似文献   

9.
10.
BACKGROUND: The precise mechanisms involved in islet xenograft rejection remain unknown. The purpose of the present study was to determine cellular mechanisms responsible for islet xenograft rejection in the liver to facilitate finding a procedure for prevention of immune rejection. METHODS: Hepatic mononuclear cells (MNC) as well as splenocytes, peripheral blood MNC, and thymocytes from streptozotocin-induced diabetic mice (BALB/c) rejecting the intrahepatic rat (Lewis) islet xenografts were isolated and examined by two-color FACS analysis. RESULTS: The characteristic finding of the hepatic MNC from the mice rejecting islet xenografts compared with mice receiving isografts was a significant increase in the yield as well as in the percentage of the cells expressing CD3+ interleukin-2 receptor (IL-2R) alpha- beta+, CD3+ CD8alpha+ beta+, and T cell receptor (TCR) alphabeta+ lymphocyte function-associated antigen-1+. The expression of CD3 and TCR alphabeta of these T cells was found to be of intermediate intensity (TCR(int) cells). The expansion of these TCR(int) cells occurred predominantly in the liver. There was no significant difference in the cells expressing CD3+ IL-2R alpha+, CD3+ CD4+, CD3+ TCRgammadelta+, CD3- IL-2Rbeta+ (natural killer cells), and B220+ (B cells). In vivo administration of anti-IL-2Rbeta monoclonal antibody directed to the expanded cells produced a prevention of rejection. CONCLUSIONS: These findings suggest that islet xenograft rejection in the liver from rat to mouse is an event for which the TCR(int) cells are responsible.  相似文献   

11.
Murine NK1 natural T (NT) cells are a population of alphabeta T cells that express NK cell receptors and an invariant TCR rearrangement. These cells rapidly produce large amounts of IL-4 upon activation and have been suggested to promote Th2 differentiation. We sought to determine whether a human NK1 T cell analogue could be detected in PBMC, and if so, characterize the TCR usage, cytokine expression, and surface phenotype of this subset. Using flow cytometry, we have demonstrated a distinct population of V alpha24+, V beta11+, CD56+ T cells consistent with NT cells. Upon sequencing, these cells expressed an invariant V alpha24-J alphaQ TCR rearrangement, verifying their identity as a human NK1 T cell analogue. NT cells demonstrated increased frequencies of both IFN-gamma and IL-4 production. Strikingly, 30 to 45% of CD4+ NT cells expressed IL-4, a sixfold greater frequency than that seen in mainstream CD4+ alphabeta T cells. Contrary to the pattern seen with mainstream T cells, virtually all IL-4-producing NT cells coexpressed IFN-gamma, indicating that this subset of NT cells has a unique Th0 phenotype. These data establish that V alpha24+ NT cells are a potent source of IL-4 and as such, may play a role in Th2 priming in human immune responses. This work demonstrates that human NT cells can be phenotypically identified and functionally studied in the blood of healthy or diseased subjects.  相似文献   

12.
Several studies have demonstrated the existence of a murine NK1.1+ alphabeta T cell subset expressing V alpha14+ TCR alpha-chains with highly conserved invariant junctional sequences and able to secrete Th2 cytokines when exposed to CD1+ stimulator cells. In humans, alphabeta T cells carrying invariant V alpha24+ TCR alpha-chains highly homologous to those expressed by murine NK1.1 cells have been recently described. Here we show that these cells (referred to as V alpha24inv T cells) and murine NK1.1+ alphabeta T cells resemble each other in several ways. First, like their murine counterparts, T cells expressing high levels of V alpha24inv TCRs can be either CD4- CD8- double negative (DN) or CD4+, but they never express heterodimeric CD8 molecules. Second, most V alpha24inv T cells are brightly stained by NKRP1-specific mAb but not by mAb directed against other type II transmembrane proteins of the NK complex. Third, DN and particularly CD4+ V alpha24inv T cells are greatly enriched for IL-4 producers. The concomitant expression of highly conserved TCRs of a particular set of NK markers and of Th2 cytokines in human and murine alphabeta T cells suggests a coordinate acquisition of these phenotypic and functional properties. Furthermore, the relatively high frequency of human V alpha24inv T cells, which are presently shown to represent on average 1/500 PBL, and the high interindividual variations of the size of this cell subset under physiologic conditions go for a major role played by alphabeta T cells carrying invariant TCR in a large array of immune responses.  相似文献   

13.
Two aspects of T cell differentiation in T cell receptor (TCR)-transgenic mice, the generation of an unusual population of CD4-CD8-TCR+ thymocytes and the absence of gamma delta cells, have been the focus of extensive investigation. To examine the basis for these phenomena, we investigated the effects of separate expression of a transgenic TCR alpha chain and a transgenic TCR beta chain on thymocyte differentiation. Our data indicate that expression of a transgenic TCR alpha chain causes thymocytes to differentiate into a CD4-CD8-TCR+ lineage at an early developmental stage, depleting the number of thymocytes that differentiate into the alpha beta lineage. Surprisingly, expression of the TCR alpha chain transgene is also associated with the development of T cell lymphosarcoma. In contrast, expression of the transgenic TCR beta chain causes immature T cells to accelerate differentiation into the alpha beta lineage and thus inhibits the generation of gamma delta cells. Our observations provide a model for understanding T cell differentiation in TCR-transgenic mice.  相似文献   

14.
15.
The introduction of cloned T cell receptor (TCR) genes into bone marrow cells could provide a way to increase the frequency of tumor- or pathogen-specific cytotoxic T lymphocyte (CTL) precursors. We demonstrate here the ability of a retroviral vector to direct expression of a Valpha15/Vbeta13 MHC class I-restricted TCR in lethally irradiated mice reconstituted with transduced bone marrow cells. We have detected retroviral-mediated TCR expression by flow cytometry 6-19 weeks after transplantation in C57L (Vbeta13(-/-)) and Rag1(-/-) bone marrow-reconstituted mice, and in C57BL/6 hosts reconstituted with transduced C57BL/6-Rag1(-/-) bone marrow. Southern analysis confirmed the presence of integrated provirus and revealed that the frequency of transduction is greater than the frequency of cell surface TCR expression. Although TCR expression on Vbeta13+ transduced cells is lower than endogenous TCR levels, it is largely confined to CD4+CD8+ (thymus) and CD8+ (thymus and spleen) T cells. In Rag1(-/-) mice, which display a developmental arrest of thymocytes at the immature CD4-CD8- stage, retrovirus-mediated TCR expression selectively rescues CD4+CD8+ and CD8+ populations. These results indicate that the ectopically expressed TCR is functional during T cell development. Furthermore, we have observed Vbeta13+ TCR expression by up to 13% of peripheral CD8+ T cells in C57L and C57BL/6 hosts. This represents a substantial increase relative to total Vbeta13 frequency in normal C57BL/6 mice (3-5%), and an even greater increase over the estimated frequency of CTL precursors of a defined specificity (10(-5)-10(-4)). Our findings indicate that TCR gene transfer can be used to develop new approaches to immunotherapy, and provide the basis for further studies examining the contribution of retrovirus-mediated TCR expression to an antigen-specific CTL response.  相似文献   

16.
17.
18.
During T cell development the T cell receptor (TCR) beta chain is expressed before the TCR alpha chain. Experiments in TCR beta transgenic severe combined immune deficiency (SCID) mice have shown that the TCR beta protein can be expressed on the cell surface of immature thymocytes in the absence of the TCR alpha chain and that the TCR beta protein controls T cell development with regard to cell number, CD4/CD8 expression and allelic exclusion of the TCR beta chain. Subsequent experiments have shown that on the surface of thymocytes from TCR beta transgenic SCID mice the TCR beta protein can be expressed in a monomeric and dimeric form whereas only the dimeric form was found on the surface of a TCR beta-transfected, immature T cell line. The results presented here show that normal thymocytes from 16-day-old fetuses likewise express only the dimeric form and that the monomeric form on the surface of thymocytes from transgenic mice results from glycosyl phosphatidylinositol linkage. Our results show for the first time that under physiological conditions a TCR beta dimer can be expressed on the cell surface without the TCR alpha chain.  相似文献   

19.
Recent data indicate that the cell surface glycoprotein CD5 functions as a negative regulator of T cell receptor (TCR)-mediated signaling. In this study, we examined the regulation of CD5 surface expression during normal thymocyte ontogeny and in mice with developmental and/or signal transduction defects. The results demonstrate that low level expression of CD5 on CD4(-)CD8(-) (double negative, DN) thymocytes is independent of TCR gene rearrangement; however, induction of CD5 surface expression on DN thymocytes requires engagement of the pre-TCR and is dependent upon the activity of p56(lck). At the CD4(+)CD8(+) (double positive, DP) stage, intermediate CD5 levels are maintained by low affinity TCR-major histocompatibility complex (MHC) interactions, and CD5 surface expression is proportional to both the surface level and signaling capacity of the TCR. High-level expression of CD5 on DP and CD4(+) or CD8(+) (single positive, SP) thymocytes is induced by engagement of the alpha/beta-TCR by (positively or negatively) selecting ligands. Significantly, CD5 surface expression on mature SP thymocytes and T cells was found to directly parallel the avidity or signaling intensity of the positively selecting TCR-MHC-ligand interaction. Taken together, these observations suggest that the developmental regulation of CD5 in response to TCR signaling and TCR avidity represents a mechanism for fine tuning of the TCR signaling response.  相似文献   

20.
CD28 is a 44-kDa homodimeric receptor that is expressed on the majority of T cells. Engagement of the CD28 receptor by soluble anti-CD28 mAb in conjunction with phorbol ester (PMA) induces the production of cytokines and the proliferation of resting T cells via signal transduction pathways independent of the TCR. Evidence is provided herein that CD28 signals leading to cytokine production do not require the p59fyn (Fyn) tyrosine kinase, whereas CD28-mediated proliferation is dependent on the presence of the Fyn kinase in thymic, but not lymph node, cells. The defect in proliferation is not due to failure of IL-2R signaling, since addition of high concentrations of exogenous IL-2 can overcome the proliferative defect. Analysis of CD28-directed induction of the IL-2R alpha (CD25)-chain, which confers high affinity binding to IL-2, showed that Fyn-deficient thymocytes, but not lymph node cells, failed to up-regulate CD25 expression following anti-CD28 and PMA stimulation. Thus, the Fyn tyrosine kinase is critically required for thymic CD28-mediated CD25 expression and proliferation but not for CD28-mediated cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号