首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study discusses the effects of the heat exchanger type, refrigerant, inner tube configuration, and fin geometry on evaporator performance by adopting updated correlations of EVSIM, a numerical analysis model based on the tube-by-tube method developed by Domanski. The heat exchanger types considered are the cross-counter flow type and cross-parallel flow type. The refrigerants considered for the numerical test as a working fluid are R-134a, R-410A and R-22. For inner tube configuration, enhanced tube and smooth tube cases are considered. For the air side evaporation performance, heat exchangers using plate fins, wavy fins and slit fins are analyzed. Results show that the heat transfer rate of the cross-counter flow type heat exchanger is 3% higher than that of the cross-parallel flow type with R-22. The total heat transfer rate of the evaporator using R-410A is higher than those using R-22 and R-134a, while the total pressure drop of R-410A is lower than those of R-22 and R-134a. The heat transfer rate of the evaporator using enhanced tubes is two times higher than that using smooth tubes, but the pressure drop of the enhanced tube is 45–50% higher than that of the smooth tubes. The evaporation performance of slit fins is superior to that of plate fins by 54%.  相似文献   

2.
Hydrocarbons are considered as alternative fluids for refrigeration, air-conditioning and heat pump applications. Pure butane, propane or their mixtures can be adopted, but due to their flammable properties, the systems have to be designed in such a way that the refrigerant charge is minimized. Therefore, compact heat exchangers and enhanced geometries are adopted in such systems. In this paper, the current state of the art for two-phase heat transfer calculations for pure hydrocarbons and their mixtures is reviewed and analysed. Recommendations are proposed for estimating evaporation and condensation heat transfer in various geometries including enhanced tubes as well as compact heat exchangers.  相似文献   

3.
A new way to assess the performance of refrigeration system models is presented in this paper, based on the estimation of cycle parameters, such as the evaporation temperature which will determine the validity of the method. This paper is the first of a series which will also study the influence of the heat transfer coefficient models on the estimation of the refrigeration cycle parameters. It focuses on fin and tube evaporators and includes the dehumidification process of humid air. The flow through the heat exchanger is considered to be steady and the refrigerant flow inside the tubes is considered one-dimensional. The evaporator model is discretised in cells where 1D mass, momentum and energy conservation equations are solved by using an iterative procedure called SEWTLE. This procedure is based on decoupling the calculation of the fluid flows from each other assuming that the tube temperature field is known at each fluid iteration. Special attention is paid to the correlations utilised for the evaluation of heat transfer coefficients as well as the friction factor on the air and on the refrigerant side. A comparison between calculated values and measured results is made on the basis of the evaporation temperature. The experimental results used in this work correspond to an air-to-water heat pump and have been obtained by using R-22 and R-290 as refrigerants.  相似文献   

4.
This paper presents the experimental tests on HFC-134a condensation inside a small brazed plate heat exchanger: the effects of refrigerant mass flux, saturation temperature and vapour super-heating are investigated.A transition point between gravity controlled and forced convection condensation has been found for a refrigerant mass flux around 20 kg/m2 s. For refrigerant mass flux lower than 20 kg/m2 s, the saturated vapour heat transfer coefficients are not dependent on mass flux and are well predicted by the Nusselt [Nusselt, W., 1916. Die oberflachenkondensation des wasserdampfes. Z. Ver. Dt. Ing. 60, 541–546, 569–575] analysis for vertical surface. For refrigerant mass flux higher than 20 kg/m2 s, the saturated vapour heat transfer coefficients depend on mass flux and are well predicted by the Akers et al. [Akers, W.W., Deans, H.A., Crosser, O.K., 1959. Condensing heat transfer within horizontal tubes. Chem. Eng. Prog. Symp. Ser. 55, 171–176] equation. In the forced convection condensation region, the heat transfer coefficients show a 30% increase for a doubling of the refrigerant mass flux. The condensation heat transfer coefficients of super-heated vapour are 8–10% higher than those of saturated vapour and are well predicted by the Webb [Webb, R.L., 1998. Convective condensation of superheated vapour. ASME J. Heat Transfer 120, 418–421] model. The heat transfer coefficients show weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow and therefore a quadratic dependence on the refrigerant mass flux.  相似文献   

5.
Fin-and-tube heat exchangers are widely used in air conditioners, chillers, etc. A lot of factors, including arrangement of refrigerant circuits, configure specification of fins and tubes, and operating conditions, have significant influence on the performance of fin-and-tube heat exchangers. For the purpose of fast design of high performance heat exchangers, a simulator reflecting the influence of these factors is necessary. In this paper, a general steady state mathematic model based on the graph theory is presented. With the help of the directed graph and graph-based traversal methods (Breadth-first search and Depth-first search), this model is capable to describe any flexible refrigerant circuit arrangement, and quantify the refrigerant distribution in the refrigerant circuit and heat conduction through fins. An alternative iteration method is also developed to solve the conservation equations, which can shorten the simulating time effectively. The model is verified with the experimental results, and the maximum error is within ±10.0%. A simulator based on this model has been used for designing practical fin-and-tube heat exchangers.  相似文献   

6.
This paper presents the experimental heat transfer coefficients and pressure drop measured during refrigerant R134a vaporisation inside a small brazed plate heat exchanger (BPHE): the effects of heat flux, refrigerant mass flux, saturation temperature and outlet conditions are investigated. The BPHE tested consists of 10 plates, 72 mm in width and 310 mm in length, which present a macro-scale herringbone corrugation with an inclination angle of 65° and corrugation amplitude of 2 mm.The experimental results are reported in terms of refrigerant side heat transfer coefficients and frictional pressure drop. The heat transfer coefficients show great sensitivity both to heat flux and outlet conditions and weak sensitivity to saturation temperature. The frictional pressure drop shows a linear dependence on the kinetic energy per unit volume of the refrigerant flow.The experimental heat transfer coefficients are also compared with two well-known correlations for nucleate pool boiling and a correlation for frictional pressure drop is proposed.  相似文献   

7.
A plate-type evaporator, working with natural refrigerant circulation, has been investigated both experimentally and theoretically. Motivated by the phase-out of ozone-depleting substances, HCFC22 was compared to HFC134a and two zeotropic refrigerant mixtures. The effect of different separator liquid levels, i.e. refrigerant flows, and its influence on heat transfer was also studied. The investigated plate-type evaporator consists of thirteen vertical flow channels and its size is 3.0 m × 0.5 m. The heat source for the evaporator is a falling water film on the outside of the plate. Experimental studies have been carried out using a test facility that enabled detailed measurements of heat transfer and pressure drop. Experiments were compared to results from a calculation method that simultaneously calculates heat transfer and pressure drop in a variable number of steps along the evaporator. The calculation method is based on a pressure drop correlation proposed by the VDI-Wärmeatlas and a heat transfer correlation for vertical tubes proposed by Steiner and Taborek. For different evaporator duties, heat transfer was over predicted by 12% for pure fluids by 15% for mixtures. Calculated pressure drops were well within ±5% of the measured values. Changes in heat transfer due to different flows were closely predicted by the proposed calculation method.  相似文献   

8.
The objective of this study is to provide experimental data that can be used in the optimal design of flat plate finned-tube heat exchangers with large fin pitch. In this study, 22 heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The reduction in the heat transfer coefficient of the four-row heat exchanger coil was approximately 10% as the fin pitch decreased from 15.0 to 7.5 mm over the Reynolds number range of 500–900 that was calculated based on the tube diameter. For all fin pitches, the heat transfer coefficient decreased as the number of tube row increased from 1 to 4. The staggered tube alignment improved heat transfer performance more than 10% compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of 3.8 and 6.2% for the inline and staggered tube alignment, respectively.  相似文献   

9.
Fluted tube-in-tube condensers are key components in advanced energy efficient water heating heat pumps. Therefore, there exists a need for a computer design tool that incorporates all the essential features of these heat exchangers. This paper describes the development of a detailed model to simulate fluted tube refrigerant-to-water condensers. The model allows the surface area to be divided into any number of sections for which all the refrigerant and water properties can be evaluated. This allows for the extension of the model to simulate heat exchangers for cycles employing zeotropic refrigerant mixtures. For the waterside existing empirical equations are used for both friction and heat transfer. However, on the refrigerant side no correlations are available in the literature to calculate friction and heat transfer coefficients. The approach followed in this paper is therefore to use existing smooth tube correlations combined with enhancement ratios based on correlations available for helical coils as well as enhancement factors based on empirical data for fluted tube condensers. The model is validated with the aid of results from independent tests on two commercial fluted tube heat exchangers. The average difference between the simulated and measured pressure drops is 7.27% and the average difference for the log mean temperature difference (LMTD) is 4.41%.  相似文献   

10.
The objective of this paper is to investigate the influence of nanoparticles on the heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube, and to present a correlation for predicting heat transfer performance of refrigerant-based nanofluid. For the convenience of preparing refrigerant-based nanofluid, R113 refrigerant and CuO nanoparticles were used. Experimental conditions include an evaporation pressure of 78.25 kPa, mass fluxes from 100 to 200 kg m−2 s−1, heat fluxes from 3.08 to 6.16 kW m−2, inlet vapor qualities from 0.2 to 0.7, and mass fractions of nanoparticles from 0 to 0.5 wt%. The experimental results show that the heat transfer coefficient of refrigerant-based nanofluid is larger than that of pure refrigerant, and the maximum enhancement of heat transfer coefficient is 29.7%. A heat transfer correlation for refrigerant-based nanofluid is proposed, and the predictions agree with 93% of the experimental data within the deviation of ±20%.  相似文献   

11.
A new program was developed to analyze the heat transfer characteristics of fin and tube evaporators that use a zeotropic mixture refrigerant, R-407C, as the working fluid. The calculation algorithm is based on EVSIM (NIST), but a tube is segmented into several sections to provide a base unit for the calculations in this study. Therefore, two-dimensional air mal-distribution in the tube-length (horizontal) and vertical directions of the evaporator can be considered. The temperature gradient in the flow direction is traced using a discrete pattern to simulate the continuous variation found in actual evaporators. To validate the simulation results, 45 test cases in a real evaporator were performed with two different refrigerant flow path configurations using R-22 and R-407C refrigerants. The deviation between the simulations and test data was a maximum of 5.4%, and the trends were similar. The local heat transfer predictions were verified by comparing the numerical and test wall temperatures along the refrigerant flow path. Local temperature difference and the heat transfer contributions from each row are also analyzed along refrigerant flow path. And more, the impact of air mal-distribution is studied with two-dimensional four different types of velocity profiles and the significant difference in heat transfer is analyzed. The program developed in this study will be a useful tool to know all of information related with heat and mass transfer at any local point and can be used for improving the efficiency of zeotropic mixture refrigerant evaporators.  相似文献   

12.
A prototype liquid-to-refrigerant heat exchanger was developed with the aim of minimizing the refrigerant charge in small systems. To allow correct calculation of the refrigerant side heat transfer, the heat exchanger was first tested for liquid-to-liquid (water-to-water) operation in order to determine the single-phase heat transfer performance. These single-phase tests are reported in this paper. The heat exchanger was made from extruded multiport aluminium tubes and was designed similar to a shell-and-tube heat exchanger. The heat transfer areas of the shell-side and tube-side were approximately 0.82 m2 and 0.78 m2, respectively. There were six rectangular-shaped parallel channels in a tube. The hydraulic diameter of the tube-side was 1.42 mm and of the shell-side 3.62 mm. Tests were conducted with varying water flow rates, temperature levels and heat fluxes on both the tube and shell sides at Reynolds numbers of approximately 170–6000 on the tube-side and 1000–5000 on the shell-side, respectively. The Wilson plot method was employed to investigate the heat transfer on both the shell and tube sides. In the Reynolds number range of 2300–6000, it was found that the Nusselt numbers agreed with those predicted by the Gnielinski correlation within ±5% accuracy. In the Reynolds number range of 170–1200 the Nusselt numbers gradually increased from 2.1 to 3.7. None of the previously reported correlations for laminar flow predicted the Nusselt numbers well in this range. The shell-side Nusselt numbers were found to be considerably higher than those predicted by correlations from the literature.  相似文献   

13.
Condensation heat transfer, both inside and outside horizontal tubes, plays a key role in refrigeration, air conditioning and heat pump applications. In the recent years the science of condensation heat transfer has been severely challenged by the adoption of substitute working fluids and new enhanced surfaces for heat exchangers. Well-known and widely established semiempirical correlations to predict heat transfer during condensation may show to be quite inaccurate in some new applications, and consequently a renewed effort is now being dedicated to the characterisation of flow conditions and associated predictive procedures for heat transfer and pressure drop of condensing vapours, even in the form of zeotropic mixtures. This paper critically reviews the most recent results appeared in the open literature and pertinent to thermal design of condensers for the air conditioning and refrigeration industry; both in-tube and bundle condensation are considered, related to the use of plain and enhanced surfaces.  相似文献   

14.
A general distributed model with two-phase flow for refrigerant coupled with a frost model is developed for studying the dynamic behavior of an evaporator. The equations are derived in non-steady-state manner for the refrigerant and a quasi-steady state model with permeation for the frost. The complex flow and geometry of the finned tube evaporator lead to uneven wall and air temperature distributions, which in turn affect the rate of frost growth and densification along the coil depth. Results include frost accumulation and its effect on energy transfer, air off-coil temperature, refrigerant liquid dry-out position and propagation of frost formation along the coil.  相似文献   

15.
In order to achieve widespread use of heat pumps across the full spectrum of potential applications, it is critical that the first cost of the units is acceptable. There are many factors influencing this cost, including the number of units manufactured, the ease of installation, the complexity of the control requirements, and the cost of the working fluid(s). A common feature of all heat pump cycles is the presence of at least one heat exchanger, indeed some heat-driven cycles are composed almost entirely of heat exchangers, each having a different but critical role to play. There are several important aspects of heat exchangers that can help to reduce first cost of these components and the system, (in addition to the possible positive impact on coefficient of performance). Two of these are discussed here — compact heat exchangers (CHEs) and heat transfer enhancement. The latter may be directly associated with CHEs but can be equally beneficial in reducing approach temperature differences in 'conventional' shell and tube heat exchangers. Both are essential features of many intensified processes, which the author argues need compatible heat pumps if the market for the latter is to flourish. In this paper, the most recent types of CHE are described, with emphasis on the benefits they can bring to heat pump first cost and performance. Heat transfer enhancement in heat pumps is also reviewed.  相似文献   

16.
Microfin tubes are widely used in air cooled and water cooled heat exchangers for heat pump and refrigeration applications during condensation or evaporation of refrigerants. In order to design heat exchangers and to optimize heat transfer surfaces, accurate procedures for computing pressure drops and heat transfer coefficients are necessary. This paper presents a new simple model for the prediction of the heat transfer coefficient to be applied to condensation in horizontal microfin tubes of halogenated and natural refrigerants, pure fluids or nearly azeotropic mixtures. The updated model accounts for refrigerant physical properties, two-phase flow patterns in microfin tubes and geometrical characteristics of the tubes. It is validated against a data bank of 3115 experimental heat transfer coefficients measured in different independent laboratories all over the world including diverse inside tube geometries and different condensing refrigerants among which R22, R134a, R123, R410A and CO2.  相似文献   

17.
The heat transfer coefficient and pressure drop during gas cooling process of CO2 (R744) in a horizontal tube were investigated experimentally. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and a gas cooler (test section). The water loop consists of a variable speed pump, an isothermal tank, and a flow meter. The refrigerant, circulated by the variable-speed pump, condenses in the inner tube while water flows in the annulus. The gas cooler of tube diameter is 6000 mm in length, and it is divided into 12 subsections.The pressure drop of CO2 in the gas cooler shows a relatively good agreement with those predicted by Blasius's correlation. The local heat transfer coefficient of CO2 agrees well with the correlation by Bringer–Smith. However, at the region near Pseudo-critical temperature, the experiments indicate higher values than the Bringer–Smith correlation. Based on the experimental data presented in this paper, a new correlation to predict the heat transfer coefficient of supercritical CO2 during in-tube cooling has been developed. The majority of the experimental values are within 18% of the values predicted by the new correlation.  相似文献   

18.
This paper reports heat transfer results obtained during condensation of refrigerant propane inside a minichannel aluminium heat exchanger vertically mounted in an experimental setup simulating a water-to-water heat pump. The condenser was constructed of multiport minichannel aluminium tubes assembled as a shell-and-tube heat exchanger. Propane vapour entered the condenser tubes via the top end and exited sub-cooled from the bottom. Coolant water flowed upward on the shell-side. The heat transfer areas of the tube-side and the shell-side of the condenser were 0.941 m2 and 0.985 m2, respectively. The heat transfer rate between the two fluids was controlled by varying the evaporation temperature while the condensation temperature was fixed. The applied heat transfer rate was within 3900–9500 W for all tests. Experiments were performed at constant condensing temperatures of 30 °C, 40 °C and 50 °C, respectively. The cooling water flow rate was maintained at 11.90 l min−1 for all tests. De-superheating length, two-phase length, sub-cooling length, local heat transfer coefficients and average heat transfer coefficients of the condenser were calculated. The experimental heat transfer coefficients were compared with predictions from correlations found in the literature. The experimental heat transfer coefficients in the different regions were higher than those predicted by the available correlations.  相似文献   

19.
Micro heat pumps, with dimensions in the order of centimetres, may in the future be utilised for the heating and/or cooling of buildings, vehicles, clothing, and other products or applications. A number of issues have yet to be solved, including the construction of a microscale compressor, and determination of micro heat exchanger heat transfer capacities. Test samples of micro heat exchangers and a corresponding test apparatus have been built. Some two-phase experiments with propane (R-290) as refrigerant have been conducted. Preliminary results for a micro condenser with 0.5 mm wide trapezoidal channels of 25 mm length showed that a heat flux of up to 135 kW/m2, based on the refrigerant-side area, was attainable. The corresponding overall heat transfer coefficient was 10 kW/(m2 K), with a refrigerant mass flux of 165 kg/(m2 s) and a refrigerant-side pressure drop of 180 kPa/m.  相似文献   

20.
This paper describes and analyzes a novel design of multiple parallel-pass (MPP) microchannel tube condenser and its applications to automotive A/C systems. A flow distributor concept is introduced in MPP condenser in order to enable parallel flow arrangement in adjacent flow paths. Throughout analysis of two-phase flow and heat transfer processes in MPP condenser, a two-phase zone enlargement technique is developed to enhance condensation heat transfer and reduce pressure drop. Visual observation indicates a more uniform refrigerant quality entering the next cooling pass can be achieved in MPP condenser because superheated vapor through a pass-through hole on flow distributor directly injects into the separated liquid–vapor zone in a header tube. Performance test results show MPP condenser is able to improve heat transfer rate as high as 9.5% while its refrigerant mass flow increases 13.34% when comparing to a benchmark PF condenser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号