首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
对位芳纶纤维具有的刚性分子链结构以及表面化学惰性导致其力学机械性能较差。研究发现:芳纶浆粕的打浆能改善芳纶纸的成纸性能,间位芳纶沉析纤维本身具有较高的机械强度和较好的电绝缘性能,添加间位芳纶沉析纤维作为粘结纤维可有效改善对位芳纶纤维纸的抄造性能,当沉析纤维含量为30%左右时,纸张经过热压机高温高压作用,两种纤维更易熔粘,使纸张产生较高的物理性能和电气性能。  相似文献   

2.
基于对对位芳纶纤维及对位芳纶纸进行动态力学分析,探究了对位芳纶纤维在一定频率的交变力作用下的应变行为及纸基材料内部分子的运动。研究表明,温度由低到高时,对位芳纶纸基材料经历了玻璃态、高弹态、黏流态3种不同的状态;由于结晶度较高的对位芳纶短切纤维的贡献,配抄纸样的初始储能模量高于纯浆粕纤维;热压可以使芳纶浆粕纤维发生重结晶,提高结晶度,有利于改善纤维的储能模量;通过动态力学温度谱图,可以从微观角度说明抄造芳纶纸用的对位芳纶短切纤维和对位芳纶浆粕纤维的共混性很好。  相似文献   

3.
本研究以原位聚合法制备的对位芳纶纳米纤维及市售对位芳纶沉析纤维为黏结纤维,分别与对位芳纶短切纤维混合,通过湿法抄造制备对位芳纶纸(纳米纸和沉析纸)。详细研究了2种不同原料及其用量对纸张结构及性能的影响规律,并对作用机理进行了探讨。结果表明,采用对位芳纶纳米纤维制备的纳米纸在纸张匀度、机械强度、电气绝缘强度等方面均优于对位芳纶沉析纤维制备的沉析纸。黏结纤维含量均为40%时,纳米纸抗张指数比沉析纸提高了44%,撕裂指数提高了57%,电击穿强度提高了80%。这种差异主要来源于对位芳纶纳米纤维具有更高的表面活性,以及由此产生良好的可加工性及二次组装性能。  相似文献   

4.
国产对位芳纶纤维分子结构分析   总被引:1,自引:0,他引:1  
文章利用扫描电镜、红外光谱仪和X衍射仪对国产对位芳纶和Kevlar49对位芳纶纤维进行微观形貌观察、分子结构分析并计算两种纤维的聚合度,为国产对位芳纶的理论研究提供一定的参考依据。  相似文献   

5.
研究某一国产对位芳纶和Kevlar49纤维热力学性能.通过电镜对两种纤维的形貌进行了观察,并由红外光谱和黏度检测计算其聚合度,比较分子结构的差异,同时测试对比了两种对位芳纶纤维热力学性能.研究表明:两种纤维横截面均为几何圆形,化学结构成分也相同.国产对位芳纶纤维的分子量和聚合度均低于Kevlar49纤维.热力学性能试验表明:Kevlar49纤维具有更好的力学性能.认为:要提高国产对位芳纶纤维的力学性能必须提高其聚合度.  相似文献   

6.
对位芳纶沉析纤维是一种采用物理沉析法制备而得的新型芳纶纤维,为解析这种纤维的形态特征与其芳纶纸基材料(对位芳纶沉析纤维和对位芳纶短切纤维组成)结构和性能之间的相关性,采用扫描电子显微镜(SEM)、原子力显微镜(AFM)表征了该纤维的表观形貌;通过纤维质量分析仪(Morfi Compact)分析了该纤维的形态参数;利用压汞仪(MIP)测定了芳纶纸基材料的孔隙结构参数;并探讨了对位芳纶沉析纤维对芳纶纸基材料孔隙结构和物理性能的影响。结果表明,对位芳纶沉析纤维呈薄膜褶皱状、形态细小、表面粗糙、易于分散;纤维质均长度为0.479 mm,细小纤维含量为71.9%,尺寸均一性好、细碎化程度高,利于芳纶纸基材料的复合增强;对位芳纶沉析纤维能显著改善芳纶纸基材料的结构,直接影响其机械性能和绝缘性能,最佳含量应为70%左右。  相似文献   

7.
对位芳纶纤维分子链刚性结构以及纤维表面化学惰性导致纤维间的结合力较差,进而导致其机械性能较低。本实验利用高强、高模、耐高温性能优异的聚酰亚胺树脂溶液浸渍对位芳纶原纸,以此来增强对位芳纶纸基材料的力学性能及耐热性能。实验结果表明,浸渍后纸页抗张、撕裂指数比未经处理的纸样绝对值分别增大了32.9%和54.2%。XRD分析表明,浸渍后纸页的结晶度增大,这将有利于在纸页热压后提升其物理性能。SEM图显示由于聚酰亚胺树脂溶液的浸渍作用,对位芳纶浆粕和短切纤维在纸页的表面分布更加均匀,起到增强效果。TG分析表明,经过浸渍处理后,对位芳纶纸的最初分解温度达到500℃,显著提升了其耐温性能。  相似文献   

8.
《黑龙江造纸》2015,(4):8-10
对位芳纶纤维具有的刚性分子链结构以及表面化学惰性导致其成纸机械性能较差。研究发现:添加粘结纤维与对位芳纶纤维进行配抄,经热压后可较好地改善成纸机械性能。添加间位芳纶沉析纤维和聚酯纤维均可提升纸张物理机械性能,但聚酯纤维增强效果较好,当聚酯纤维含量为20%左右时,经热压后纸张物理机械性能有较大幅度提升。  相似文献   

9.
研究了染色载体、真空等离子处理对对位芳纶染色深度的影响,不同对位芳纶产品与其染色深度的关系,对位芳纶染色前后纤维强伸度的变化。结果表明,恰当的染色载体可以显著提高对位芳纶的染色深度,不同的对位芳纶产品染色深度差异明显,真空等离子处理对染色深度影响微小,染色前后对位芳纶的纤维强伸度没有明显变化。  相似文献   

10.
探讨酸碱环境下国产芳纶Ⅲ纤维的强伸性能变化情况。测试分析了国产芳纶Ⅲ纤维原样及其在酸碱处理条件下的强伸性能,并与对位芳纶进行了对比。结果表明:芳纶Ⅲ纤维的断裂强度几乎是对位芳纶的1.5倍,模量也高于对位芳纶。在强酸溶液处理下,其大分子结构中的酰胺键会出现水解现象,但仍表现出较好的耐酸性;在碱溶液处理下,国产芳纶Ⅲ纤维表现出极佳的耐碱腐蚀性能。认为:芳纶Ⅲ纤维适用于高强高模、且有一定耐酸碱腐蚀性要求的场合,是一种较好的过滤材料。  相似文献   

11.
选取11种高性能纤维,包括PBO纤维、芳纶1313纤维、对位芳纶纤维、高强聚乙烯长丝和高强聚乙烯短纤等,采用单纤维压缩弯曲仪测试纤维的单纤维压缩弯曲性能,并对其压缩弯曲曲线进行对比分析。结果表明,11种高性能纤维中,Technora纤维的最大力和抗弯刚度最大,在相同条件下,Technora纤维更难被压弯;PBO纤维普通丝的抗弯刚度远大于高模量丝的抗弯刚度;直径相同的条件下,芳纶1414纤维的最大力、等效弯曲模量及抗弯刚度明显高于芳纶1313纤维;超高分子量聚乙烯纤维的压缩弯曲曲线变化趋势最明显。  相似文献   

12.
芳砜纶高温烟气除尘过滤应用性能的试验研究   总被引:2,自引:2,他引:0  
芳砜纶(PSA纤维)是我国具有自主知识产权并已实现产业化生产的耐高温纤维。对PSA纤维在高温烟气除尘领域中的应用性能做了针对性较强的试验研究。由PSA纤维与其他常见耐高温滤料用纤维的耐化学性能试验结果表明,PSA纤维的耐酸性能与芳纶1313相近,低于PPS纤维和PI纤维;耐强碱性能略差于芳纶1313,优于PI纤维。由PSA纤维针刺毡耐高温性能的试验结果表明,由于PSA纤维突出的耐高温性及高温尺寸稳定性,PSA纤维针刺毡的尺寸稳定性、机械性能和透气性等受高温环境影响较小,能够满足高温环境下的长期使用要求。  相似文献   

13.
芳纶1313纤维是一种耐高温纤维,目前在世界上发展速度很快,已有美国、日本、前苏联三个国家的4家公司投入工业化生产,生产能力合计超过27000t/a。我国研究这种纤维已有将近30年的历史,目前仍未转入工业化生产。本文在分析了国内外情况的基础上,对我国的市场情况进行了系统的分析,并对如何在成国实现芳纶1313纤维产业化的问题提出了6点看法和建议。  相似文献   

14.
主要研究了槽式打浆和 PFI 打浆对芳纶 1414 纤维形态结构及成纸性能的影响.研究表明:芳纶 1414 短切纤维不适宜进行打浆,进行适当的预处理可以改善其在水溶液中的分散性能,浆粕纤维槽式打浆效果优于 PFI 打浆,当打浆度为 40°SR 左右时,纸张强度较未打浆有较大提高.  相似文献   

15.
合成纤维的分散性能是影响纸页匀度和成纸性能的重要因素之一。为了改善对位芳纶纤维的分散性能,从自制分散剂入手,针对芳纶1414纤维的分散絮聚特性,复配了一种高性能分散剂S,制备了全对位热压芳纶纸。通过Zeta电位测定、SEM分析等方法初步探讨了分散剂S对芳纶1414纸基材料性能的影响。  相似文献   

16.
利用一点法快速地测定了芳纶纤维溶液的特性黏度,通过考察纤维混合溶液的特性黏度与其组分配比之间的关系,提出了一种通过测定特性黏度确定芳纶纤维混合物中短切纤维和沉析纤维配比的新方法。该方法简单易行,高效快捷,不仅适用于确定间位芳纶纤维混合物的组分配比,也同样能够有效地确定间位和对位芳纶纤维混合物的组分配比。  相似文献   

17.
为了提高芳纶纤维纸基材料的导热性,通过水热合成法在对位芳纶纤维(PPTA)表面生长氧化锌纳米线(ZnO NWs),进一步用硅烷偶联剂KH550对PPTA@ZnO NWs进行功能化修饰,采用湿法造纸技术制备PPTA@ZnO NWs-KH550纸基复合材料并研究其导热性能、绝缘性能及力学性能。结果表明,ZnO NWs成功地均匀包覆在PPTA表面。与PPTA纸基复合材料相比,PPTA@ZnO NWs纸基复合材料的导热系数可达0.455W/(m·K),提高115.64%,且介电强度满足绝缘要求。经硅烷偶联剂KH550功能化修饰后,PPTA@ZnO NWs-KH550纸基复合材料导热系数较修饰前基本保持不变,呈现优异的绝缘性和良好的力学性能,介电强度增加3.69%,拉伸强度提高58.75%。  相似文献   

18.
间位与对位芳纶纤维造纸性能比较   总被引:3,自引:0,他引:3  
本文介绍了芳纶1313和芳纶1414短纤维及浆粕纤维的纤维形态,并对比论述了芳纶纤维在造纸过程中的行为和性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号