首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Porosity in fiber laser formation of 5A06 aluminum alloy   总被引:2,自引:0,他引:2  
The mechanism of porosity formation and its suppression methods in laser formation of aluminum alloy have been studied using a 4kW fiber laser to weld 5A06 aluminum alloy with SAl-Mg5 filler. It was found that the porosity formation is closely related to the stability of the keyhole and fluctuation of the molten pool in the laser welding aluminum alloy. The filling wire increased the instability of the keyhole and weld pool, thus further increasing the amount of gas cavities in the joint. Prefabrication of a suitable gap for the butt joint can provide a natural passage for the flow of the liquid metal, which can weaken, and even completely eliminate the disturbance of the filling wire on the formation of keyhole. The gap can also provide a passage for the escape of the bubble. Thus, this method can greatly decrease the sheet’s susceptibility to porosity. Moreover, for a thin sheet, if the power of the laser is sufficient to form a keyhole with stable penetration through the weld sheet, a weld bead without porosity can also be obtained because closing the keyhole is almost impossible.  相似文献   

2.
A mathematical model of laser welding steel with a T-joint was developed in this paper to investigate the formation process of keyhole-induced porosity, helping to understand the mechanism of porosity formation in laser welding steels with heavy section. Solidification model and adiabatic bubble model were coupled in this model, which could more approximately reflect the formation process of bubble and its evolution into porosity. The volume-of-fluid (VOF) method was taken to track free surfaces of keyhole and porosity. The numerical results showed that the unstable keyhole during the laser welding process induced the collapse of keyhole and then resulted in bubbles in the molten pool. These bubbles moved following with the fluid flow in the molten pool, where some bubbles could escape out of molten pool under the competition of flow and solidification speed. But some bubbles captured by a solidified wall during the migration process in the molten pool would evolve into porosities. It was also found that some bubbles formed adjacent to a fusion line were easier to be captured by a solidification surface, which could give explanation for some porosities occurring close to the fusion line. A good agreement of simulation and experimental results proved the reliability of this mathematical model, while the mechanism of porosity formation was better clarified with this model.  相似文献   

3.
The formation and stability of keyhole in stationary laser welding on aluminum metal matrix composites reinforced with particles are studied using a numerical simulation. The interaction between molten pool and reinforcement particles is evaluated by using the particle–fluid coupling model in the numerical simulation. In order to study the effect of different volume fractions of particles on the keyhole stability and fluid flow inside the molten pool, keyhole formation process, variation of free surface, temperature distribution, and fluid flow are calculated numerically, respectively. The calculation results show that the keyhole is stable at the beginning under different conditions and then the protrusion occurs inside the keyhole with increasing calculation time. The flow behavior of molten pool affected by particles and forces acting on the surface could explain the forming of humps inside the keyhole, which directly cause the variation of the keyhole. As the volume fraction of TiB2 particles increases, the keyhole is more likely to be instable and the oscillation occurs at an earlier time. Fluctuations of the surface tension and recoil pressure due to the uneven distribution play an important role in the instability of the keyhole.  相似文献   

4.
激光入射角影响焊接熔池匙孔瞬态行为数值模拟   总被引:1,自引:0,他引:1  
在激光焊接中,激光入射角直接影响着熔池匙孔瞬态行为,而仅采用工艺试验方法难以探索其规律。利用数值模拟技术模拟激光入射角分别为30°、0°、-30°的焊接过程,研究激光入射角对熔池匙孔瞬态行为的影响。同时通过激光焊接试验对仿真结果进行验证,数值仿真的焊缝横截面形貌与试验结果吻合较好,表明仿真结果能够反映激光焊接过程。分析不同激光入射角下温度场、熔池内流场、匙孔后壁反冲压力、匙孔深度和匙孔后壁静压力的变化。结果表明,激光入射角的正负影响熔池内部流动的快慢;激光入射角为正时,有利于抑制飞溅形成,而激光入射角为负时,则促进飞溅生成;激光入射角的正负明显影响匙孔的稳定性,当激光入射角为负时,匙孔稳定性降低,坍塌频率增加,产生气泡的概率提高。使用合适的激光正入射角有利于提高激光焊接质量。  相似文献   

5.
高氮钢激光-电弧复合焊接气孔控制方法研究*   总被引:1,自引:0,他引:1  
为了掌握高氮钢复合焊接气孔控制的有效方法,研究电弧能量、激光能量和振动频率对焊缝气孔的影响。从气孔率方面分析焊缝气孔的产生原因,并从电流和电压波形及熔滴过渡方面分析其对焊接过程稳定性的影响。熔池流动与焊缝气孔具有一定的关联性,并从熔池流动状态方面分析其对气孔的影响。激光匙孔的形成需要一定的阈值能量,匙孔穿透状态对气孔率有直接影响,依据激光匙孔底部受力情况,分析匙孔状态对焊缝气孔率的影响。结果表明:气孔率随电弧能量或激光能量的增加而呈先升后降的变化趋势,电弧能量4 800 J(I=200 A,U=24 V)时,气孔率最低,仅为0.49%;而激光功率为2.8 kW时,气孔率降为最低,仅为0.14%;施加振动后焊缝气孔率均明显减小,气孔率随着振动频率的增加而先降后升。适当的电弧能量或激光能量可有效抑制焊缝内气孔数量,振动频率为35 Hz时抑制气孔效果最好。  相似文献   

6.
焊接熔池流动行为是影响焊缝成形和接头质量的关键因素之一,其特征难以直接获取。试验采用ZrO2颗粒作为示踪粒子,利用高速相机观察示踪粒子运动轨迹,开展高氮钢激光-电弧复合热源焊接熔池表面流动行为的研究。研究结果表明:单独激光焊接时,其熔池的流动主要受匙孔尺寸变化的影响;单独电弧焊接时,其熔池的流动则主要受电弧压力和熔滴进入熔池时所产生的冲击力的影响;而激光-电弧复合焊接时,其熔池的流动既受电弧压力和熔滴进入熔池时所产生的冲击力的影响,同时,匙孔的存在也会影响其熔池的流动。在激光-电弧复合焊接过程中,示踪粒子的直线移动距离随着焊接电流和电弧电压的增加而增加;而激光功率的改变对其直线移动距离的影响并不显著。研究结果揭示了不同焊接工艺及其参数对高氮钢焊接熔池表面流动行为的影响规律,为高氮钢焊接工艺的选择提供了理论依据。  相似文献   

7.
On-line monitoring and control of laser welding process play an important role in welding quality assessment. The morphology of molten pool during welding process influences welding quality. Volume, tilt, and height were characteristics of molten pool, but they cannot be measured directly during the welding process. An experiment of surfacing weld of Type 304 austenitic stainless steel with high-power disk laser welding was implemented. An active vision system with an auxiliary laser light source was designed to acquire the images of molten pool and its shadow during the welding process. The images were pre-processed to analyze the characteristics of the casting shadow of molten pool instead of analyzing the characteristics of the molten pool itself. The area, maximal distance between the shadow and keyhole, maximal width, and the tilt of the shadow were selected as the characteristics to analyze the relationship between the morphology of molten pool and welding quality by linear and 10th non-linear fitting. The results indicated that the welding quality could be dynamically detected by observing these characteristics. A different welding process was also conducted to confirm the proposed method. The research in this paper provides a method for on-line monitoring and control during high-power disk laser welding.  相似文献   

8.
针对12mm厚的SUS 304不锈钢板的大功率光纤激光焊接过程中,焊缝表面容易出现塌陷的问题,利用高速相机及“三明治”焊接方法拍摄了熔池的流动状况。讨论了焊接位置和焊接速度以及底部驼峰的形成对表面塌陷的影响,研究了塌陷产生的原因。结果表明:从水平焊接位置到竖直焊接位置的过程中,表面塌陷平均深度逐步减小。焊接速度越小,小孔前沿孔壁上“凸台”越大,表面塌陷越严重。底部驼峰的形成,导致熔池熔融金属不足,形成表面塌陷。  相似文献   

9.
利用旋转Gauss曲面体新型热源模型,忽略深熔激光焊时小孔对传热的影响,建立了移动激光热源作用下的三维数学模型.利用PHOENICS3.4软件,模拟了SUS304不锈钢深熔激光焊接热过程的温度场和熔池熔合线形状,得到了不同焊接速度下的温度场分布云图和"钉头"状的熔池形状.数值模拟结果与试验结果基本吻合.  相似文献   

10.
铝合金激光焊接的研究现状   总被引:1,自引:0,他引:1  
综述了铝合金激光焊接技术的新近发展。列举了铝合金激光焊接的优越性和常见的焊接缺陷,重点分析了激光焊接气孔的复杂性和特殊性,给出了现今有关小孔研究工作的新进展。激光焊接的主要优点是高效率,尤其体现在大厚度的深熔焊接上。要想成功实现大厚度铝合金的深熔焊接,必须解决小孔所造成的气孔缺陷问题。  相似文献   

11.
变极性等离子弧立焊穿孔熔池的稳定建立   总被引:2,自引:0,他引:2  
改进焊接工艺控制时序,编制起弧系统控制平台及信号采集程序。采用改进的起弧系统对2219铝合金和LF6铝合金薄板及中厚板进行变极性等离子弧立焊工艺试验,利用红外线测温仪检测起弧过程中焊接熔池区域附近的点随预热时间的温度变化,并把该曲线上的临界温度作为检测穿孔熔池是否形成的标志,计算机根据穿孔时刻的临界温度控制焊件行走的使能信号。研究表明:改进的起弧系统能够简化设备操作,提高自动化程度与工作效率;在穿孔形成的瞬间,检测点的温度有一个从高到低的突变过程(穿孔前的瞬间温度达到临界值),而且对于同一检测点,多次测量得到的临界温度基本稳定;起弧阶段向主焊接阶段过渡稳定,能够实现穿孔熔池的稳定建立,从而验证改进的起弧控制系统的可行性及可靠性。  相似文献   

12.
Welding of zinc-coated steel sheets for the automotive industry has been investigated experimentally and theoretically, using a continuous wave 2 kW CO2 laser. The specimens of 0.8, 1.0 and 1.2 mm thickness were welded as butt joint and lap joint. Argon gas was shielded co-axially to reduce the plasma and to protect the molten, pool from atmosphere. The mechanical tests of specimens were carried out to investigate the ductility of welds in butt joint and lap joint, using the Erichsen test, ball punch test and tensile shear test. The value of transverse weld pattern is higher than others. The fatigue life of longitudinal weld is superior, but that of circular weld pattern is inferior due to the high tensile residual stresses in the weld. The maximum Erichsen value was obtained as 96% and the deformability of zinc coated steel butt-welded was found to be 80% in the ball punch test. The high pressure formed by vaporization of zinc with the low boiling temperature during laser lap-joint welding splattered the molten pool and created porosities in the weld. The optimum gap was calculated to be 0.1 mm in the lap joint welding of zinc-coated steel sheet which was a good agreement with the experimental result.  相似文献   

13.
采用常规激光-熔化极惰性气体保护电弧(Metal inert gas,MIG)复合横向焊接铝合金过程中,焊缝表面极易出现咬边和下塌等缺陷,由此开展排布方式对激光-MIG电弧复合横向焊接铝合金焊接特性的影响研究。分析二者的排布方式对熔池特征、熔滴过渡形式以及焊缝成形规律的影响。试验结果表明,异面引导复合焊接方式对焊缝成形有明显改善作用,焊缝表面熔宽减少、中心线偏移和咬边缺陷得到有效抑制。采用同面引导复合方式时,熔滴过渡到匙孔后方,熔池下侧熔融金属大量堆积并产生周期性的波动,导致焊缝结晶组织出现了分层现象;而采用异面引导复合方式时,熔滴过渡到匙孔下方,并且熔滴在熔池中的落点位置与同面引导方式相比要偏上,熔滴过渡频率稍低,此时熔池中熔融金属分布较为均匀,熔池下部堆积金属较少,有效抑制了焊缝的下塌和咬边缺陷。  相似文献   

14.
Laser-induced plasma has been one of the hotspots of high-power CO2 laser welding for many years. A novel method was proposed to suppress the plasma plume through external constraints, which resulted in more stable welding process and slightly increased penetration depth. Based on high-speed camera and image processing technology, it was demonstrated that the expansion of plasma plume both in height and width was suppressed by a pair of water-cooled copper blocks laid near laser incident point along the direction of seam. Besides its intensity and size, the dynamical behavior of plasma plume under spatial constraint was observed and analyzed by the characteristic parameters. The constraint mechanism and influence of the spacing between the two copper blocks was discussed. Results showed that external constraint was effective to suppress plasma plume, stabilize welding process, and to increase weld penetration for high-power CO2 laser welding.  相似文献   

15.
Gap-free lap welding of zinc-coated steel using pulsed CO2 laser   总被引:1,自引:0,他引:1  
CO2 laser welding of zinc-coated steel sheets in the lap configuration has been a major research effort for the automotive industry for many years. The introduction of a gap between the sheets is one way of solving the zinc gas explosion problem. However, this requires sophisticated clamping devices and spacer materials. A homogeneous gap is therefore difficult to realise in high volume production. This paper describes a simple but useful approach for CO2 laser welding of zinc-coated steel sheets in the lap configuration. By using a gated pulse mode, a seam welding process is developed that allows zinc-coated materials to be welded in a gap-free, overlap configuration. Laser seam welds in the lap configuration were produced in 0.7 mm-thick steel sheet with 7 μm zinc coating on both sides. A number of pulsed CO2 laser welding parameters, including peak power, duty cycle, travel speed, pulse repetition rate, and pulse energy, were identified. Furthermore, the effects of pulsed CO2 laser welding parameters on weldability were also investigated. The study shows that through the proper selection of welding parameters, it is possible to produce visually sound welds where porosity is still unavoidably formed. It was observed that decreasing the welding speed could reduce the porosity within the visually sound welds.  相似文献   

16.
The plasma behavior and metal transfer in CO2 laser?+?GMAW-P hybrid welding have been investigated. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. The effect of the mutual distance and laser power on the metal transfer has been discussed. The results indicate that the laser-induced plasma plume have a significant impact to the arc shape, resistance, electrode melting, droplet formation, detachment, and impingement onto the workpiece. The laser-induced plasma changes the conductive path and forces affecting on the droplet. High laser power and short distance between laser beam and arc (DLA) reduce the pulse base time (PB) of the voltage of phase, increase the droplet detachment time (PD) and the pulse current time (PP) of the voltage of phase, and it also lead to an upward and inward force near the bottom of the droplet. As a consequence, the droplet formation time is increased, and eventually an off-axis droplet phenomenon is deduced. The vapor jet force induced by the the keyhole plasma acts on the droplet as a retention force; this force decreases when the DLA becomes larger and increases when the laser power becomes higher. The observation may help in understanding the weld characteristics with respect to variation in mutual distance and laser power which may be beneficial in using the main process parameters to produce desired weld quality.  相似文献   

17.
激光-电弧复合热源焊接技术由于具有焊接熔深大、效率高、质量好等优点而受到广泛关注。采用低功率脉冲激光-钨极惰性气体保护(Tungsten inert gas,TIG)焊电弧复合热源技术进行镁合金板材的焊接,研究激光脉冲作用消失之后的等离子体行为和激光"匙孔"行为。在上述试验结果的指导下优化工艺参数,对比研究采用单独激光焊、TIG电弧焊和复合热源焊这三种方法实现镁合金板材对接焊相同效果时焊接效率的差异。研究结果表明,激光"匙孔"和"匙孔"等离子体的形成是实现复合热源高效焊接的前提条件,恰当的工艺参数可以使得激光"匙孔"维持稳定的开口状态,这种状态提高了电弧的稳定性和能量密度,延长了镁等离子体的恢复时间,因此能够提高复合热源的焊接效率。达到相同焊接效果时复合热源的焊接效率分别达到单独激光焊接效率的7.14倍和单独TIG电弧焊接效率的4.29倍。  相似文献   

18.
熔池作为激光与材料相互作用过程的基本单元,其内部传热、传质过程对微观凝固组织和宏观缺陷的形成有重要影响。掌握激光材料加工熔池流动行为机制,并采取有效的调控手段是获得高质量激光材料加工成形件的关键。随着试验设备与技术的不断发展,激光材料加工熔池流动研究正朝深度化和精细化方向发展,并取得了大量研究成果。系统介绍了熔池流动行为实验研究方法的发展和应用,重点综述了激光焊接和激光增材制造过程熔池/匙孔流动行为国内外研究进展。首先介绍了熔池流动的受力机制及其主要影响因素;然后回顾和讨论了使用直接法和间接法对熔池流动的可视化实验研究进展,并对目前熔池流动行为的主要调控手段进行了总结。最后,对进一步熔池流动行为机理研究和更高效的熔池流动调控手段进行展望。  相似文献   

19.
由于多传感匙孔特征参数可以有效地反映大功率激光焊接质量状态,本文研究了匙孔特征信息的提取方法并建立了焊缝成形预测模型。以大功率盘形激光焊接304不锈钢为试验对象,应用近红外高速摄像机和X射线视觉成像系统同时提取了焊接过程中的熔池动态图像,并分割出匙孔区域。针对近红外图像,应用矩方法导出匙孔的不变矩特征,同时定义并提取匙孔面积和最前端点纵坐标两个特征;针对X射线图像则提取匙孔深度和熵两个特征。在不同激光功率条件下得到匙孔特征并进行特征融合分析,然后建立了3个BP神经网络焊缝成形预测模型。探索了匙孔形态、焊接条件和焊接状态三者之间的联系,实现了对焊接过程的在线监测。试验结果表明,将两个传感器获取的匙孔特征信息融合并进行主成分分析变换后,熔宽和熔深的预测绝对误差平均值分别为0.18mm和0.57mm,比基于单个传感器获取匙孔特征建立的BP神经网络分别减小了0.03mm和0.31mm,显示提出的方法能够有效在线监测大功率盘形激光焊接状态。  相似文献   

20.
This paper describes a three-dimensional numerical model based on finite volume method to simulate heat transfer and fluid flow in laser–tungsten inert gas (TIG) hybrid welding process. To simplify the model and reduce the calculation time, keyhole dynamics are not considered; instead, a new modified volumetric heat source model is presented for the laser source to take into account the effect of the keyhole on the heat transfer into the workpiece. Due to the presence of arc current, an appropriate electromagnetic model based on the Maxwell equations are also solved to calculate electromagnetic forces in the weld pool. The results of computer simulation, including temperature, current density, electromagnetic, and melted material velocity field, are presented here. Furthermore, several dimensionless numbers are employed to recognize the importance of fluid flow driving forces in the weld pool. It is deduced that the fluid flow has an important effect on the weld pool shape. It is also founded that among the driving forces, Marangoni force is dominant fluid force in the weld pool. Besides, calculated results of hybrid welding process are compared with those of TIG and laser welding processes. The weld pool depth is relatively the same, but the width of the weld pool is highly larger in hybrid welding than lone laser welding. Eventually, the presented model is validated by comparison between calculated and experimental weld pool shape. It is founded that there is a good agreement as the capability of this model can be proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号