首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
在不同温度下对S32205双相不锈钢进行离子渗氮,利用光学显微镜、显微硬度计、电化学测试仪、XRD等对渗氮层组织性能进行分析。结果表明,400℃离子渗氮4 h工艺条件下,渗氮层由γN相构成,自腐蚀电位由基材的-0.294 V升高至-0.271 V,表面硬度可达到966 HV0.01,为基材表面硬度的2.5倍,渗氮层深为8μm,该温度下离子渗氮可同时提高S32205双相不锈钢耐蚀性和表面硬度。随着渗氮温度升高,在450℃和500℃渗氮时虽然渗氮层深和硬度明显提高,然而由于Cr N的析出,耐蚀性均低于基材。  相似文献   

2.
利用脉冲直流辉光等离子技术,对1Cr11Ni2W2MoV马氏体热强不锈钢进行不同工艺参数的离子渗氮。利用光学显微镜、显微硬度计、XRD对渗氮层的显微组织及硬度进行了分析。结果表明,在所选用的离子渗氮工艺参数下,1Cr11Ni2W2MoV钢渗层只由扩散层组成,渗氮温度≤560℃时,渗层主要由固溶N原子的α相组成,并伴有少量的γ'-Fe4N和CrN析出;随着渗氮温度的升高和渗氮时间的延长,固溶N原子的α相逐渐转变成γ'-Fe4N相,当处理温度达到590℃时,渗层主要由γ'-Fe4N和Cr N组成。离子渗氮后渗层的表面硬度较未渗氮前有显著的提高,在一定范围内,渗层的表面硬度和渗层深度都随着渗氮温度和渗氮时间的增加而增加,渗层硬度梯度分布也随着渗氮时间的延长变得平缓。  相似文献   

3.
研究了离子渗氮温度对00Cr22Ni5Mo3N双相不锈钢表面渗氮层性能和组织的影响。采用HXD-1000TMC显微硬度计、扫描电镜、能谱仪和PARSTA 4000电化学工作站对其表面硬度、组织、成分和耐腐蚀性能进行分析。结果表明,随渗氮温度的升高,渗氮层表面硬度先增加后降低。耐腐蚀性随渗氮温度的上升而降低。当渗氮温度高于500℃时,渗氮层中的Cr被大量析出,造成周围区域贫Cr,从而使耐腐蚀性能下降。当渗氮温度为450℃时,渗氮层的综合性能最佳。  相似文献   

4.
目的提高F51双相不锈钢的硬度以及耐磨性能。方法将F51双相不锈钢进行低温(450℃)和高温(550℃)离子渗氮处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)观察F51双相不锈钢渗氮层的微观组织,利用X射线衍射(XRD)方法对渗氮层沿深度方向相组成的变化进行分析,采用显微硬度计、摩擦磨损实验机分别对渗氮层的显微硬度及耐磨性能进行测试,采用激光扫描共聚焦显微镜(LSCM)对磨痕形貌进行观察。结果F51双相不锈钢低温渗氮层主要由N相组成,由表及里为N N+N(少量);高温渗氮层主要由CrN+N相组成,由表及里为CrN+N N+N。高温渗氮层厚度约为低温渗氮层厚度的3倍。低温渗氮样品的平均表面硬度约为基体表面硬度的3.5倍;高温渗氮样品的平均表面硬度约为基体硬度的4倍。基体的摩擦系数约为0.71,低温和高温渗氮处理后样品的摩擦系数大大降低,分别为0.24和0.17。渗氮样品磨痕的宽度和深度较基体显著降低。结论F51双相不锈钢低温渗氮层主要由N相组成,高温渗氮层主要由CrN+N相组成,两种温度渗氮后的样品硬度和耐磨性均得到显著提高。  相似文献   

5.
00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢离子渗氮组织和性能   总被引:1,自引:0,他引:1  
对00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢进行了离子渗氮处理,研究了不同渗氮条件下所形成的渗氮层的相结构与性能。结果表明:经离子渗氮后的00Cr12Ni9Mo4Cu2Ti马氏体时效不锈钢的表面硬度、耐磨性都有明显的提高,表面硬度最高达到了1350HV0.05。当样品在400℃渗氮时,表层新相主要由α相组成;当渗氮温度上升至500℃时,表层新相主要由αN相、γ′-Fe4N相、ε相组成,并有大量的CrN相形成;当渗氮温度高于600℃时,ε相、CrN的含量继续增加,γ′-Fe4N相逐渐减少,αN相几乎完全分解。伴随着CrN相的生成,样品的耐磨性得到了提高,表面耐腐蚀性能有一定下降。实验还观察到该马氏体时效不锈钢渗氮层中有微裂纹产生,裂纹的形成与样品的残余内应力和氮化物相生成有关。  相似文献   

6.
目的 研究不同放电电流密度下,渗氮层组织及摩擦学性能随时间的演变规律,以及氮在不锈钢中的扩散与析出机制。方法 采用热丝增强等离子体辅助渗氮方法,对奥氏体不锈钢表面进行改性。采用XRD及XPS研究渗氮层相组成及结构;采用SEM观察渗氮层的横截面形貌,并利用能谱分析氮含量及其随深度的分布情况;分别使用纳米压痕仪、磨损仪及台阶仪研究渗氮层的摩擦学性能。结果 当电流密度为0.81 mA/cm2时,短时间(1~2 h)渗氮后,不锈钢表面形成单一过饱和固溶体相;渗氮时间增加到4 h后,转变为更稳定的Fe4N相,渗氮层厚度达14.2 μm,表面硬度达17.81 GPa。当电流密度增加到1.25 mA/cm2时,N与金属原子间结合能增加,渗氮1 h开始析出CrN和Fe4N相,4 h后表面硬度和模量分别达22.88 GPa和314.2 GPa,磨损量仅为基体的0.53%。结论 氮原子在奥氏体中的扩散系数随电流密度成正比增加。当渗氮时间(或热丝电流)增加,渗氮层厚度与维氏硬度明显增加,其增加趋势正比于时间的1/2次幂,结构由单一固溶体相γN转变为固溶体与少量氮化物析出相CrN和Fe4N,渗氮层的摩擦学性能明显提高。  相似文献   

7.
李广宇  李刚  雷明凯 《表面技术》2022,51(6):300-306
目的 探讨活性屏等离子体源渗氮技术提高马氏体不锈钢硬度与耐蚀性能的可行性。方法 将2Cr13马氏体不锈钢进行350~550℃、6 h活性屏等离子体源渗氮处理,采用光学显微镜(OM)、电子探针显微分析仪(EPMA)和X射线衍射仪(XRD)分析渗氮层的组织、成分和相结构,使用显微硬度计测试渗氮层的显微硬度,利用电化学腐蚀试验解析评估渗氮层的耐蚀性能。结果 经活性屏等离子体源渗氮处理后,可在马氏体不锈钢表面形成厚度为2~45μm,N原子分数为20%~25%的渗氮层,其表面显微硬度达1050~1350HV0.25,是基体硬度的4~5倍。350℃时,渗氮层以ε-Fe2-3N相为主,且含有少量αN相;450℃时,渗氮层由αN、ε-Fe2-3N和γ’-Fe4N相构成;渗氮温度升至550℃时,渗氮层由α-Fe、CrN和γ’-Fe4N相构成,αN、ε-Fe2-3N相消失。350、450℃时,渗氮层在3.5%NaCl溶液中的阳极极化曲线出现明显钝化区,而未渗氮的2Cr13不锈钢并未发现钝化区,自腐蚀电位Ecorr由未渗...  相似文献   

8.
《铸造技术》2016,(12):2563-2565
为了提高表面硬度和耐磨性,对1Cr18Ni9Ti不锈钢进行真空固溶渗氮处理。采用金相显微镜,X射线衍射仪、显微硬度计和耐磨试验机分析了渗氮层的组织与性能。结果表明,1Cr18Ni9Ti不锈钢经1 050℃真空固溶渗氮8 h后,获得了由γ′-Fe4N、CrN及含氮奥氏体组成的渗氮层;渗氮层组织致密,表面硬度为900~950 HV,有效渗层深度200μm以上;合金耐磨性得到改善,磨损失重仅为基体合金的1/26。  相似文献   

9.
离子渗氮AISI 420马氏体不锈钢耐蚀行为研究   总被引:4,自引:1,他引:3  
采用不同温度对AISI 420马氏体不锈钢进行离子渗氮处理.借助光学显微镜和X射线衍射(XRD)技术分析了渗氮层的微观组织结构,利用显微硬度计测试了渗氮层的硬度分布,通过电化学极化曲线测试和盐雾腐蚀试验研究了离子渗氮AISI 420不锈钢在模拟工业环境中的腐蚀行为.结果表明:AISI 420不锈钢350℃低温离子渗氮层由ε-Fe3N和N过饱和固溶体αN相组成,其化学稳定性高,加之固溶Cr元素的联合作用,明显提高了AISI 420不锈钢基材的腐蚀抗力.AISI 420钢经450℃和550℃渗氮处理,渗氮层中的αN分解成了α相和CrN,造成基体贫Cr,降低了基材的耐蚀性能.马氏体不锈钢低温离子渗氮处理不仅可以提高表面硬度,而且可以获得良好的耐蚀性能.  相似文献   

10.
周武  王敏  赵同新  卢军  杨旗 《金属热处理》2022,47(11):147-151
采用离子渗氮工艺对一种Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢进行表面改性处理。利用光学显微镜(OM)、X射线衍射(XRD)、电子探针显微分析仪(EPMA)和维氏硬度计对不同离子渗氮温度下渗层的组织和性能进行了研究。结果表明,Fe-C-Cr-Ni-Mn-V沉淀硬化型奥氏体不锈钢经430~520 ℃离子渗氮处理10 h后,试样表面均形成一层厚度均匀的渗氮层,表面硬度显著增大。随着离子渗氮温度的升高,渗层厚度增大,520 ℃渗氮时渗层厚度达到78 μm。当渗氮温度为430 ℃时,渗层表面主要由γN+CrN+γ′-Fe4N相组成;当渗氮温度升高至520 ℃时,渗层表面主要由γ′-Fe4N+CrN+ε-Fe2-3N相组成。在3种渗氮温度下,渗层中均有CrN析出,导致渗层耐蚀性低于基体组织。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号