首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The occurrence of early after depolarization (EAD) in single mouse ventricular myocytes was observed and its ionic mechanisms were studied using the patch clamp technique. Under treatment with perfusion of Tyrode's solution containing 3 mM KCl and 3 mM CsCl, 3/6 cases exhibited EAD, while with 3 mM KCl or 3 mM CsCl alone, EAD was not induced. The background steady-state current-voltage (I-V) curves of the myocytes showed no negative slope, i.e., the slope in the range of 50 mV positive to the reversal potential was virtually flat and stayed at a low current level. Under perfusion of 3 mM KCl and 3 mM CsCl, the outward current in the above region decreased nearly to 0: in the myocytes which exhibited EAD, a net inward current (crossover) was displayed in the same region, which was abolished by 10 microM TTX and 10 microM nifedipine. The results of whole-cell inward rectifier current I-V curves were similar to the above background steady-state I-V curves. In mouse ventricular myocytes, transient outward current was very strong with a peak current density of 63 +/- 19 pA/pF, whereas low K+ and Cs+ had no significant effect. 11/30 cases showed obvious delayed rectifier current, but the tail current recorded by envelope method was relatively weak (1.19 +/- 0.35 pA/pF) and insensitive to CsCl or changing of the KCl concentration. The results suggest that under treatment with low K+ and Cs+, the inhibition of inward rectifier current is the basis of the formation of second plateau, while Na and Ca currents contribute to the generation of triggered bursts.  相似文献   

2.
Increased firing of cholinergic neurons of the laterodorsal tegmental nucleus (LDT) plays a critical role in generating the behavioral states of arousal and rapid eye movement sleep. The majority of these neurons exhibit a prominent transient potassium current (IA) that shapes firing but the properties of which have not been examined in detail. Although IA has been reported to be blocked by intracellular cesium, the IA in LDT neurons appeared resistant to intracellular cesium. The present study compared the properties of this cesium-resistant current to those typically ascribed to IA. Whole cell recordings were obtained from LDT neurons (n = 67) in brain slices with potassium- or cesium-containing pipette solutions. A transient current was observed in cells dialyzed with each solution (KGluc-85%; CsGluc-79%). However, in cesium-dialyzed neurons, the transient current was inward at test potentials negative to about -35 mV. Extracellular 4-aminopyridine (4-AP; 2-5 mM) blocked both inward and outward current, suggesting the inward current was reversed IA rather than an unmasked transient calcium current as previously suggested. This conclusion was supported by increasing [K]o from 5 to 15 mM, which shifted the reversal potential positively for both inward and outward current (+17.89 +/- 0.41 mV; mean +/- SE). Moreover, recovery from inactivation was rapid (tau = 15.5 +/- 4 ms; n = 4), as reported for IA, and both inward and outward transient current persisted in calcium-free solution [0 calcium/4 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid; n = 4] and during cadmium-blockade of calcium currents (n = 3). Finally, the transient current was blocked by intracellular 4-AP indicating that adequate dialysis occurred during the recordings. Thus the Cs-resistant current is a subthreshold IA. We also estimated the voltage-dependence of activation (V1/2 = -45.8 +/- 2 mV, k = 5.21 +/- 0.62 mV, n = 6) and inactivation (V1/2 = -59. 0 +/- 2.38 mV, k = -5.4 +/- 0.49 mV, n = 3) of this current. Computer simulations using a morphologically accurate model cell indicated that except for the extreme case of only distal A-channels and a high intracellular resistivity, our parameter estimates were good approximations. In conclusion, guinea pig LDT neurons express subthreshold A-channels that are resistant to intracellular cesium ions. This suggests that these channels differ fundamentally in their ion permeation mechanism from those previously studied. It remains to be determined if Cs+ resistance is common among brain A-channels or if this property is conferred by known A-channel subunits.  相似文献   

3.
Much of what is known about Ca2+ electrogenesis in neocortical cells has been derived from in vitro studies. Since Ca2+ currents are controlled by various modulators, comparing these findings to in vivo data is essential. Here, we analysed tetrodotoxin (TTX)-resistant, presumably Ca2+-mediated potentials in intracellularly recorded neocortical neurons in vivo. TTX was applied locally to block Na+ channels. Its effectiveness was demonstrated by the elimination of fast spikes and orthodromic responses. In response to depolarizing current pulses bringing the membrane potential beyond approximately -33 mV, 71% of neurons generated high-threshold Ca2+ spikes averaging 17 mV. This is in contrast with in vitro findings, where high-threshold spikes could only be elicited following the blockade of K+ conductances. Consistent with this, neurons dialysed with K+ channel blockers in vivo generated high-threshold spikes that had a lower threshold (approximately -40 mV) and, with intracellular Cs+, a larger amplitude, indicating the presence of K+ currents opposing the activation of Ca2+ channels. Only 15% of cortical cells displayed low-threshold Ca2+ spikes. To compare high-threshold Ca2+ spikes evoked by synaptic stimuli or current injection, another group of cortical neurons was dialysed with QX-314 and Cs+, in the absence of extracellular TTX. Synaptic stimuli applied on a background of membrane depolarization elicited presumed Ca2+ spikes whose amplitude varied in a stepwise fashion. Thus, although there are numerous similarities between in vivo and in vitro data, some significant differences were found, which suggest that the high-voltage activated Ca2+ currents and/or the K+ conductances that oppose them are subjected to different modulatory influences in vivo than in vitro.  相似文献   

4.
The effects of antiarrhythmic agents, including Classes I and IV and 3-10 mM Mg2+ on aconitine-induced arrhythmias were examined using a conventional microelectrode and patch clamp method in Langendorff-perfused rabbit hearts and isolated guinea-pig ventricular myocytes. Intracoronary application of 0.1 microM aconitine induced polymorphic ventricular tachycardia (PVT) which continued for more than 60 minutes. Application of aconitine to ventricular myocytes caused a prolonged action potential duration (APD) and the appearance of early afterdepolarization (EAD) together with the occurrence of an inward hump of the I-V curve around -60 to -40 mV and increased outward current at positive voltages. Application of 10 microM TTX and 5 mM or higher Mg2+ restored aconitine-induced PVT to sinus rhythm in Langendorff-perfused preparations and also shortened the prolonged APD, demonstrating the abolishment of EAD by aconitine in ventricular myocytes. However, antiarrhythmic agents did not exert such effects. In conclusion, the antiarrhythmic actions of Mg2+ and TTX in aconitine-induced arrhythmia are to abolish EAD and shorten the prolonged APD by suppression of the inward Na+ current around -60 to -40 mV.  相似文献   

5.
Morphological and electrophysiological characteristics of magnocellular neurons from basal forebrain nuclei of postnatal rats (11-14 days old) were examined in dissociated cell culture. Neurons were maintained in culture for periods of 5-27 days, and 95% of magnocellular (>23 micron diam) neurons stained positive with acetylcholinesterase histochemistry. With the use of phase contrast microscopy, four morphological subtypes of magnocellular neurons could be distinguished according to the shape of their soma and pattern of dendritic branching. Corresponding passive and active membrane properties were investigated with the use of whole cell configuration of the patch-clamp technique. Neurons of all cell types displayed a prominent (6-39 mV; 6.7-50 ms duration) spike afterdepolarization (ADP), which in some cells reached firing threshold. The ADP was voltage dependent, increasing in amplitude and decreasing in duration with membrane hyperpolarization with an apparent reversal potential of -59 +/- 2.3 (SE) mV. Elevating [Ca2+]o (2.5-5.0 mM) or prolonging spike repolarization with 10 mM tetraethylammonium (TEA) or 1 mM 4-aminopyridine (4-AP), potentiated the ADP while it was inhibited by reducing [Ca2+]o (2.5-1 mM) or superfusion with Cd2+ (100 microM). The ADP was selectively inhibited by amiloride (0.1-0.3 mM or Ni2+ 10 microM) but unaffected by nifedipine (3 microM), omega-conotoxin GVIA (100 nM) or omega-agatoxin IVA (200 nM), indicating that Ca2+ entry was through T-type Ca2+ channels. After inhibition of the ADP with amiloride (300 microM), depolarization to less than -65 mV revealed a spike afterhyperpolarization (AHP) with both fast and slow components that could be inhibited by 4-AP (1 mM) and Cd2+ (100 microM), respectively. In all cell types, current-voltage relationships exhibited inward rectification at hyperpolarized potentials >/=EK (approximately -90 mV). Application of Cs+ (0.1-1 mM) or Ba2+ (1-10 microM) selectively inhibited inward rectification but had no effect on resting potential or cell excitability. At higher concentrations, Ba2+ (>10 microM) also inhibited an outward current tonically active at resting potential (VH -70 mV), which under current-clamp conditions resulted in small membrane depolarization (3-10 mV) and an increase in cell excitability. Depolarizing voltage commands from prepulse potential of -90 mV (VH -70 mV) in the presence of tetrodotoxin (0.5 microM) and Cd2+ (100 microM) to potentials between -40 and +40 mV cause voltage activation of both transient A-type and sustained delayed rectifier-type outward currents, which could be selectively inhibited by 4-AP (0.3-3 mM) and TEA (1-3 mM), respectively. These results show that, although acetylcholinesterase-positive magnocellular basal forebrain neurons exhibit considerable morphological heterogeneity, they have very similar and characteristic electrophysiological properties.  相似文献   

6.
A hyperpolarization-activated current (termed I[h]) is believed to provide a pacemaker depolarization in sinoatrial node cells and in some central and peripheral neurons. In the present study, we examined if such an inward cation current exists in primary auditory neurons using the whole-cell patch-clamp technique. A large inward, non-inactivating current was seen during hyperpolarizing steps negative to the resting potential. A depolarizing sag occurred during hyperpolarizing current injection, and upon termination of the current injection there was an overshoot, or a rebound firing. A low concentration of Cs+, but not Ba2+, reversibly blocked the inward current and depolarizing sag. The activation of the current showed voltage dependence with half-activation occurring at -101 +/- 1 mV. The time course of I(h) activation was fitted by double exponential function and was voltage-dependent (time constants: tau1 and tau2 = 480 and 3125 ms at -100 mV, and 66 and 404 ms at -160 mV). The reversal potential of the current was -36 mV measured from tail currents. The conductance of the current was decreased in Na+-free solution, and increased in high K+ solution. Increases in the levels of intracellular cAMP or cGMP enhanced the current. The results suggest that there exists a hyperpolarization-activated inward cation current in mammalian primary auditory neurons. This current may provide a depolarizing current during the membrane hyperpolarization following each firing of the primary auditory nerve.  相似文献   

7.
Whole cell patch-clamp techniques were used to study voltage-dependent sodium (Na+), calcium (Ca2+), and potassium (K+) conductances in acutely isolated neurons from cortical layer I of adult rats. Layer I cells were identified by means of gamma-aminobutyric acid (GABA) immunocytochemistry. Positive stainings for the Ca2+-binding protein calretinin in a subset of cells, indicated the presence of Cajal-Retzius (C-R) cells. All investigated cells displayed a rather homogeneous profile of voltage-dependent membrane currents. A fast Na+ current activated at about -45 mV, was half-maximal steady-state inactivated at -66.6 mV, and recovery from inactivation followed a two-exponential process (tau1 = 8.4 ms and tau2 = 858.8 ms). Na+ currents declined rapidly with two voltage-dependent time constants, reaching baseline current after some tens of milliseconds. In a subset of cells (< 50%) a constant current level of < 65 pA remained at the end of a 90 ms step. A transient outward current (Ifast) activated approximately -40 mV, declined rapidly with a voltage-insensitive time constant (tau approximately 350 ms) and was relatively insensitive to tetraethylammonium (TEA, 20 mM). Ifast was separated into two components based on their sensitivity to 4-aminopyridine (4-AP): one was blocked by low concentrations (40 microM) and a second by high concentrations (6 mM). After elimination of Ifast by a conditioning prepulse (50 ms to -50 mV), a slow K+ current (I(KV)) could be studied in isolation. I(KV) was only moderately affected by 4-AP (6 mM), while TEA (20 mM) blocked most (> 80%) of the current. I(KV) activated at about -40 mV, declined monoexponentially in a voltage-dependent manner (tau approximately 850 ms at -30 mV), and revealed an incomplete steady-state inactivation. In addition to Ifast and I(KV), indications of a Ca2+-dependent outward current component were found. When Na+ currents, Ifast, and I(KV) were blocked by tetrodotoxin (TTX, 1 microM), 4-AP (6 mM) and TEA (20 mM) an inward current carried by Ca2+ was found. Ca2+ currents activated at depolarized potentials at about -30 mV, were completely blocked by 50 microM cadmium (Cd2+), were sensitive to verapamil (approximately 40% block by 10 microM), and were not affected by nickel (50 microM). During current clamp recordings, isolated layer I neurons displayed fast spiking behaviour with short action potentials (approximately 2 ms, measured at half maximal amplitude) of relative small amplitude (approximately 83 mV, measured from the action potential threshold).  相似文献   

8.
The modification of the discharge pattern of subthalamic nucleus (STN) neurons from single-spike activity to mixed burst-firing mode is one of the characteristics of parkinsonism in rat and primates. However, the mechanism of this process is not yet understood. Intrinsic firing patterns of STN neurons were examined in rat brain slices with intracellular and patch-clamp techniques. Almost half of the STN neurons that spontaneously discharged in the single-spike mode had the intrinsic property of switching to pure or mixed burst-firing mode when the membrane was hyperpolarized from -41.3 +/- 1.0 mV (range, -35 to -50 mV; n = 15) to -51.0 +/- 1.0 mV (range, -42 to -60 mV; n = 20). This switch was greatly facilitated by activation of metabotropic glutamate receptors with 1S,3R-ACPD. Recurrent membrane oscillations underlying burst-firing mode were endogenous and Ca2+-dependent because they were largely reduced by nifedipine (3 microM), Ni2+ (40 microM), and BAPTA-AM (10-50 microM) at any potential tested, whereas TTX (1 microM) had no effect. In contrast, simultaneous application of TEA (1 mM) and apamin (0.2 microM) prolonged burst duration. Moreover, in response to intracellular stimulation at hyperpolarized potentials, a plateau potential with a voltage and ionic basis similar to those of spontaneous bursts was recorded in 82% of the tested STN neurons, all of which displayed a low-threshold Ni2+-sensitive spike. We propose that recurrent membrane oscillations during bursts result from the sequential activation of T/R- and L-type Ca2+ currents, a Ca2+-activated inward current, and Ca2+-activated K+ currents.  相似文献   

9.
The ionic channels and signal transduction pathways underlying the 5-hydroxytryptamine (5-HT)-induced hyperpolarization in neurons of the rat dorsolateral septal nucleus (DLSN) were examined by using intracellular and voltage-clamp recording techniques. Application of 5-HT (1-50 microM) caused a hyperpolarizing response associated with a decreased membrane resistance in DLSN neurons. The hyperpolarization induced by 5-HT was blocked by Ba2+ (1 mM) but not by tetraethylammonium (TEA, 3 mM), glibenclamide (100 microM) and extracellular Cs+ (2 mM). 8-Hydroxy-di-n-propylamino tetralin (8-OH-DPAT; 3 microM), a selective agonist for the 5-HT1A receptor, mimicked 5-HT in producing the hyperpolarization. The 5-HT hyperpolarization was blocked by NAN-190 (5 microM), a 5-HT1A receptor antagonist. CP93129 (100 microM), a 5-HT1B receptor agonist, and L-694-247 (100 microM), a 5-HT1B/1D receptor agonist, also produced hyperpolarizing responses. The order of agonist potency was 8-OH-DPAT > CP93129 > or = L-694-247. (+/-)-2,5-Dimethoxy-4-iodoamphetamine hydrochloride (DOI, 100 microM), a 5-HT2 receptor agonist, and RS67333 (100 microM), a 5-HT4 receptor agonist, caused no hyperpolarizing response. The voltage-clamp study showed that 5-HT caused an outward current (I5-HT) in a concentration-dependent manner. I5-HT was associated with an increased membrane conductance. I5-HT reversed the polarity at the equilibrium potential for K+ calculated by the Nernst equation. I5-HT showed inward rectification at membrane potentials more negative than-70 mV. Ba2+ (100 microM) blocked the inward rectifier K+ current induced by 5-HT. I5-HT was irreversibly depressed by intracellular application of guanosine 5'-O-(3-thiotriphosphate)(GTP-gamma S) but not by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). These results suggest that in rat DLSN neurons activation of 5-HT1A receptors causes a hyperpolarizing response by activating mainly the inward rectifier K+ channels through a GTP-binding protein.  相似文献   

10.
The ionic selectivity of the hyperpolarization-activated inward current (i(f)) channel to monovalent cations was investigated in single isolated sinoatrial node cells of the rabbit using the whole-cell patch-clamp technique. With a 140 mM K+ pipette, replacement of 90% external Na+ by Li+ caused a -24.5 mV shift of the fully activated current/voltage I/V curve without a significant decrease of the slope conductance. With a 140 mM Cs+ pipette, the i(f) current decreased almost proportionally to the decrease in external [Na+]o as Li+ was substituted. These responses are practically the same as those observed with N-methyl glucamine (NMG+) substitution, suggesting that the relative permeability of Li+ compared with Na+ for the i(f) channel is as low as that of NMG+. When Cs+ or Rb+ was substituted for internal K+, the fully activated I/V relationship for i(f) showed strong inward rectification with a positive reversal potential, indicating low permeability of the i(f) channel for Cs+ and Rb+. These results show that the i(f) channel is highly selective for Na+ and K+ and will not pass the similar ions Li+ and Rb+. Such a high degree of selectivity is unique and may imply that the structure of the i(f) channel differs greatly from that of other Na+ and K+ conducting channels.  相似文献   

11.
The origin of plateau action potentials was studied in short-term cultures of dorsal paired median (DPM) neurons dissociated from the terminal abdominal ganglion of the cockroach, Periplaneta americana. Spontaneous plateau action potentials were recorded by intracellular microelectrodes in cell bodies that had neurite stumps. These action potentials featured a fast initial depolarization followed by a plateau. However, only fast spikes of short duration were observed when the cell was hyperpolarized from the resting membrane potential. These two different components of the action potentials could be separated by applying depolarizing current pulses from a hyperpolarized holding potential. Application of 200 nM tetrodotoxin (TTX) abolished both fast and slow phases, but depolarization to the original resting potential by steady current injection triggered slow monophasic action potentials that could be blocked by 3 mM CoCl2. In contrast, DPM neurons without neurites were not spontaneously active. In these cells, calcium-dependent slow monophasic action potentials were only recorded immediately after impalement or with current pulse stimulation. Immunocytochemical observations showed that dorsal unpaired median (DUM) neuron cell bodies, which are known to exhibit spontaneous sodium-dependent action potentials, reacted with an antibody directed against a synthetic peptide corresponding to the SP19 segment of voltage-activated sodium channels. In contrast, the antibody did not stain DPM neuron cell bodies but gave intense, patchy staining only in the neurite. Whole cell patch-clamp experiments performed on isolated DPM neuron cell bodies without a neurite revealed the presence of an inward current that did not inactivate completly within the duration of the test pulse. This current was insensitive to both 100 nM TTX and sodium-free saline. It was defined as a high-voltage-activated calcium current according to its high threshold of activation (-30 mV) and its sensitivity to 1 mM CdCl2 and 100 nM omega-conotoxin GVIA. Our findings demonstrate that spontaneous sodium-dependent spikes arising from the neurite are required to initiate slow somatic calcium-dependent action potentials in DPM neurons.  相似文献   

12.
Whole cell voltage- and current-clamp recordings were carried out to investigate the effects of clonidine, an alpha 2-adrenoceptor agonist, in L4 and L5 dorsal root ganglion (DRG) neurons of the rat. In voltage-clamp mode, application of 20 microM clonidine reversibly reduced the inward current evoked by hyperpolarizing voltage steps. The "clonidine-sensitive current" was obtained by subtracting the current during clonidine application from the control current, and its properties were as follows. 1) It was a slowly activating inward current evoked by hyperpolarization. 2) The reversal potential in the standard extracellular solution ([K+]o = 5 mM, [Na+]o = 151 mM) was -38.3 mV, and reduction of [Na+]o shifted it to a more negative potential, whereas an increase of [K+]o shifted it to a more positive potential, indicating that the current was carried by Na+ and K+ (PNa/PK = 0.22). 3) The relationship between the chord conductance underlying the clonidine-sensitive current and voltage could be fitted by a Boltzmann equation. These results indicate that the clonidine-sensitive current corresponds to a hyperpolarization-activated current (Ih), i.e., clonidine inhibits Ih in rat DRG neurons. DRG neurons were classified as small (15.9-32.9 microns diam), medium-sized (33-42.9 microns), and large (43-63.6 microns), and 7 of 19, 24 of 25, and 22 of 22 of these types exhibited Ih with mean +/- SE clonidine-induced inhibition values of 36.1 +/- 3.5% (n = 7), 43.1 +/- 3.7% (n = 24), and 35.1 +/- 2.7% (n = 22), respectively. Clonidine application to L4 and L5 DRG neurons excised from rats the sciatic nerves of which had been transected 14-35 days previously (transected DRG neurons) also reduced Ih. In current-clamp mode, 9 of 13 intact and 4 of 6 transected medium-sized DRG neurons that exhibited Ih responded to clonidine with hyperpolarization (> 2 mV). Some medium-sized DRG neurons exhibited repetitive action potentials in response to a depolarizing current pulse, and clonidine reduced the firing discharge frequencies in 8 of 11 intact and 3 of 4 transected neurons tested. Injection of a hyperpolarizing current pulse produced time-dependent rectification in DRG neurons that exhibited Ih, and clonidine blocked this rectification in all intact and transected neurons tested. These results suggest that inhibition of Ih due to alpha 2-adrenoceptor activation contributes to modulation of DRG neuronal activity in rats. On the basis of our findings, we discuss the possible mechanisms whereby sympathetically released norepinephrine modulates the abnormal activity of DRG neuronal cell bodies after nerve injury.  相似文献   

13.
Hyperpolarization-activated inward current in neurons of the rat's dorsal nucleus of the lateral lemniscus in vitro. J. Neurophysiol. 78: 2235-2245, 1997. The hyperpolarization-activated current (Ih) underlying inward rectification in neurons of the rat's dorsal nucleus of the lateral lemniscus (DNLL) was investigated using whole cell patch-clamp techniques. Patch recordings were made from DNLL neurons of young rats (21-30 days old) in 400 micro;m tissue slices. Under current clamp, injection of negative current produced a graded hyperpolarization of the cell membrane, often with a gradual sag in the membrane potential toward the resting value. The rate and magnitude of the sag depended on the amount of hyperpolarizing current. Larger current resulted in a larger and faster decay of the voltage. Under voltage clamp, hyperpolarizing voltage steps elicited a slowly activating inward current that was presumably responsible for the sag observed in the voltage response to a steady hyperpolarizing current recorded under current clamp. Activation of the inward current (Ih) was voltage and time dependent. The current just was seen at a membrane potential of -70 mV and was activated fully at -140 mV. The voltage value of half-maximal activation of Ih was -78.0 +/- 6.0 (SE) mV. The rate of Ih activation was best approximated by a single exponential function with a time constant that was voltage dependent, ranging from 276 +/- 27 ms at -100 mV to 186 +/- 11 ms at -140 mV. Reversal potential (Eh) of Ih current was more positive than the resting potential. Raising the extracellular potassium concentration shifted Eh to a more depolarized value, whereas lowering the extracellular sodium concentration shifted Eh in a more negative direction. Ih was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near maximal-activation (about -140 mV) was reduced to 40% of control by 1 mM cesium but was reduced to only 71% of control by 2 mM barium. When the membrane potential was near the resting potential (about -60 mV), cesium had no effect on the membrane potential, current-evoked firing rate and input resistance but reduced the spontaneous firing. When the membrane potential was more negative than -70 mV, cesium hyperpolarized the cell, decreased current-evoked firing and increased the input resistance. Ih in DNLL neurons does not contribute to the normal resting potential but may enhance the extent of excitation, thereby making the DNLL a consistently powerful inhibitory source to upper levels of the auditory system.  相似文献   

14.
We investigated the effect of changes in membrane-voltage on intracellular sodium concentration ([Na+]i) of dopamine-sensitive neurons of the substantia nigra pars compacta in a slice preparation of rat mesencephalon. Whole-cell patch-clamp techniques were combined with microfluorometric measurements of [Na+]i using the Na+-sensitive probe, sodium-binding benzofuran isophthalate (SBFI). Hyperpolarization of spontaneously active dopamine neurons (recorded in current-clamp mode) caused the cessation of action potential firing accompanied by an elevation in [Na+]i. In dopamine neurons voltage-clamped at a holding potential of -60 mV elevations of [Na+]i were induced by long-lasting (45-60 s) voltage jumps to more negative membrane potentials (-90 to -120 mV) but not by corresponding voltage jumps to -30 mV. These hyperpolarization-induced elevations of [Na+]i were depressed during inhibition of I(h), a hyperpolarization-activated inward current, by Cs+. Hyperpolarization-induced elevations in [Na+]i might occur also in other cell types which express a powerful I(h) and might signal lack of postsynaptic activity.  相似文献   

15.
1. N-type (omega-conotoxin sensitive) calcium currents (ICa) were recorded in identified neurons in Hermissenda crassicornis using low-resistance patch electrodes (0.7 +/- 0.3 M omega; n = 101) under conditions that eliminated inward Na+ currents (choline ions substitution) and suppressed outward K+ currents (Cs+, tetraethylammonium, and 4-AP). Step depolarization from a holding potential of -60 mV to potentials above -30 mV elicited ICa, which peaked approximately 20 mV and declined with increasing depolarizations. 2. Evidence for a low-threshold current was present. Step depolarization from a more hyperpolarizing potentials (e.g., -90 mV) revealed a small shoulder (< 100 pA) at -60 to -40 mV that was sensitive to Co2+ and Ni2+. However, under the conditions examined here (holding potential of -60 mV), the high-voltage-activated current predominated. 3. Barium (Ba2+) and strontium (Sr2+) permeate the Ca2+ channel with similar activation kinetics (ease of permeation; Ba2+ > Ca2+ > Sr2+). Steady-state activation of permeability versus membrane potentials for Ca2+, Ba2+, and Sr2+ as charge carriers could be fitted with the Boltzmann equation, with half-activation voltage and slope factor of 2.9 and 7.7 mV for ICa, -13.1 mV and 7.8 for Ba2+ current (IBa) and -2.3 mV and 7.8 for Sr2+ current (ISr). The time course of activation was monotonic with time constant (tau) for ICa ranging from 2 to 8 ms. 4. The inactivation profile was complex. At negative step potentials (e.g., -20 mV), inactivation of the current was slow. Depolarization steps to relatively positive voltages (e.g., 10 mV) showed more rapid inactivation than those at more positive potentials (e.g., 40 mV). When extracellular Ca2+ was raised from 5 to 10 mM, a biphasic decay (tau fast of 25 +/- 4 ms; and tau slow of 473 +/- 64 ms; mean +/- SD, n = 9) was seen. Such an observation suggested a current-mediated inactivation. 5. With a pulse duration of approximately 350 ms, ISr showed inactivation whereas Ba2+ virtually removed the decay. However, IBa turned off with more prolonged depolarization. 6. A twin-pulse protocol was used to assess the voltage dependence of inactivation: an incomplete U-shaped inactivation curve was observed for ICa, IBa, and ISr. Channels available for inactivation were increased in the presence of Ca2+ ions. 7. Inactivation was further studied with the Ca2+ chelators, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid and bis(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). With 10 mM of BAPTA, in the pipette, inactivation was reduced but not removed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The actions of substance P and thyrotropin-releasing hormone (TRH) on neonatal rat spinal motoneurones in vitro were compared using intracellular current and voltage clamp techniques. Like TRH, substance P evoked a slowly-developing, persistent depolarisation plus an increase in input resistance under current clamp conditions. Under voltage clamp conditions, substance P elicited an inward current (mainly due to a conductance block) which peaked near -40 mV and reversed polarity close to the estimated EK. A distinct conductance increase (with a reversal potential near zero) also appeared to contribute to this response. The response to substance P at resting potential was suppressed by 1.5 mM Ba2+, but not by 20 mM tetraethylammonium, 2 mM 4-aminopyridine, 2 mM Cs+ and 0.2 mM Cd2+. In addition, co-application of TRH and substance P mutually occluded each other. Thus, it is suggested that substance P and TRH share a common effector mechanism, which primarily involves the suppression of IK(T), a persistent K+ current recently discovered in these neurones.  相似文献   

17.
The electrophysiological properties of the Na+/I- symporter (NIS) were examined in a cloned rat thyroid cell line (FRTL-5) using the whole-cell patch-clamp technique. When the holding potential was between -40 mV and -80 mV, 1 mM NaI and NaSCN induced an immediate inward current which was greater with SCN- than with I-. The reversal potential for I- and SCN- induced membrane currents was +50 mV. This is close to the value of +55 mV calculated by the Nernst equation for Na+. These results are consistent with I- and SCN- translocation via the NIS that is energized by the electrochemical gradient of Na+ and coupled to the transport of two or more Na+. There was no change in the membrane current recording with ClO-4 indicating that ClO-4 was either not transported into the cell, or the translocation was electroneutral. ClO-4 addition, however, did reverse the inward currents induced by I- or SCN-. These effects of I-, SCN- and ClO-4 on membrane currents reflect endogenous NIS activity since the responses duplicated those seen in CHO cells transfected with NIS. There were additional currents elicited by SCN- in FRTL-5 cells under certain conditions. For example at holding potentials of 0 and +30 mV, 1 mM SCN- produced an increasingly greater outward current. This outward current was transient. In addition, when SCN- was washed off the cells a transient inward current was detected. Unlike SCN-, 1-10 mM I- had no observable effect on the membrane current at holding potentials of 0 and +30 mV. The results indicate FRTL-5 cells may have a specific SCN- translocation system in addition to the SCN- translocation by the I- porter. Differences demonstrated in current response may explain some of the complicated influx and efflux properties of I-, SCN- and ClO-4 in thyroid cells.  相似文献   

18.
Na(+)-Ca2+ exchanger-associated membrane currents were studied in cultured murine neocortical neurons, using whole-cell recording combined with intracellular perfusion. A net inward current specifically associated with forward (Na+(o)-Ca2+(i)) exchange was evoked at -40 mV by switching external 140 mM Li+ to 140 mM Na+. The voltage dependence of this current was consistent with that predicted for 3Na+:1Ca2+ exchange. As expected, the current depended on internal Ca2+, and could be blocked by intracellular application of the exchanger inhibitory peptide, XIP. Raising internal Na+ from 3 to 20 mM or switching the external solution from 140 mM Li+ to 30 mM Na+ activated outward currents, consistent with reverse (Na+(i)-Ca2+(o)) exchange. An external Ca2(+)-sensitive current was also identified as associated with reverse Na(+)-Ca2+ exchange based on its internal Na+ dependence and sensitivity to XIP. Combined application of external Na+ and Ca2+ in the absence of internal Na+ triggered a 3.3-fold larger inward current than the current activated in the presence of 3 mM internal Na+, raising the intriguing possibility that Na(+)-Ca2+ exchangers might concurrently operate in both the forward and the reverse direction, perhaps in different subcellular locations. With this idea in mind, we examined the effect of excitotoxic glutamate receptor activation on exchanger operation. After 3-5 min of exposure to 100-200 microM glutamate, the forward exchanger current was significantly increased even when external Na+ was reduced to 100 mM, and the external Ca2(+)-activated reverse exchanger current was eliminated.  相似文献   

19.
In lobster olfactory receptor neurons (ORNs), depolarizing responses to odorants and current injection are accompanied by the development of an afterhyperpolarization (AHP) that likely contributes to spike-frequency adaptation and that persists for several seconds after termination of the response. A portion of the AHP can be blocked by extracellular application of 5 mM CsCl. At this concentration, CsCl specifically blocks the hyperpolarization-activated cation current (Ih) in lobster ORNs. This current is likely to be active at rest, where it provides a constant, depolarizing influence. Further depolarization deactivates Ih, thus allowing the cell to be briefly hyperpolarized when that depolarizing influence is removed, thus generating an AHP. Reactivation of Ih would terminate the AHP. The component of the AHP that could not be blocked by Cs+ (the Cs(+)-insensitive AHP) was accompanied by decreased input resistance, suggesting that this component is generated by increased conductance to an ion with an equilibrium potential more negative than the resting potential. The Cs(+)-insensitive AHP in current clamp and the underlying current in voltage clamp displayed a reversal potential of approximately -75 mV. Both EK and ECl are predicted to be in this range. Similar results were obtained with the use of a high Cl- pipette solution, although that shifted ECl from -72 mV to -13 mV. However, when EK was shifted to more positive or negative values, the reversal potential also shifted accordingly. A role for the Ca(2+)-mediated K+ current in generating the Cs(+)-independent AHP was explored by testing cells in current and voltage clamp while blocking IK(Ca) with Cs+/Co(2+)-saline. In some cells, the Cs(+)-independent AHP and its underlying current could be completely and reversibly blocked by Cs+/Co2+ saline, whereas in other cells some fraction of it remained. This indicates that the Cs(+)-independent AHP results from two K+ currents, one that requires an influx of extracellular Ca2+ and one that does not. Collectively, these findings indicate that AHPs result from three phenomena that occur when lobster ORNs are depolarized: 1) inactivation of the hyperpolarization-activated cation current, 2) activation of a Ca(2+)-mediated K+ current, and 3) activation of a K+ current that does not require influx of extracellular Ca2+. Roles of these processes in modulating the output of lobster ORNs are discussed.  相似文献   

20.
The aim of this study was to elucidate electrophysiologically the actions of dopamine and SKF38393, a D1-like dopamine receptor agonist, on the membrane excitability of striatal large aspiny neurons (cholinergic interneurons). Whole-cell and perforated patch-clamp recordings were made of striatal cholinergic neurons in rat brain slice preparations. Bath application of dopamine (1-100 microM) evoked a depolarization/inward current with an increase, a decrease, or no change in membrane conductance in a dose-dependent manner. This effect was antagonized by SCH23390, a D1-like dopamine receptor antagonist. The current-voltage relationships of the dopamine-induced current determined in 23 cells suggested two conductances. In 10 cells the current reversed at -94 mV, approximately equal to the K+ equilibrium potential (EK); in three cells the I-V curves remained parallel, whereas in 10 cells the current reversed at -42 mV, which suggested an involvement of a cation permeable channel. Change in external K+ concentration shifted the reversal potential as expected for Ek in low Na+ solution. The current observed in 2 mM Ba2+-containing solution reversed at -28 mV. These actions of dopamine were mimicked by application of SKF38393 (1-50 microM) or forskolin (10 microM), an adenylyl cyclase activator, and were blocked by SCH23390 (10 microM) or SQ22536 (300 microM), an inhibitor of adenylyl cyclase. These data indicate, first, that dopamine depolarizes the striatal large aspiny neurons by a D1-mediated suppression of resting K+ conductance and an opening of a nonselective cation channel and, second, that both mechanisms are mediated by an adenylyl cyclase-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号