首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
X100管线钢的工艺控制   总被引:2,自引:2,他引:0  
利用热模拟、扫描电镜、透射电镜等分析手段研究了控轧工艺和冷却制度等对X100管线钢微观组织和显微硬度的影响。结果表明:在820℃变形时,随变形量增加,试验钢中板条贝氏体比例减少,粒状贝氏体比例增加,组织逐渐细化,显微硬度明显下降;400℃终冷时,随冷却速度的增加,粒状贝氏体组织逐渐细化,马奥岛数量减少,颗粒尺寸减小,显微硬度增加;在600~350℃范围终冷时,随终冷温度降低,贝氏体组织细化,马奥岛体积分数减少,颗粒尺寸减小,终冷温度降低到300℃时,组织中出现了大量硬相的板条贝氏体组织;显微硬度随着终冷温度的降低而增加。  相似文献   

2.
根据过冷奥氏体连续冷却转变曲线,结合显微组织分析和显微硬度测试,研究了未再结晶区小变形对675装甲钢在冷却速度0.1~30℃/s下相变和组织的影响。结果表明,经850℃未再结晶区变形25%之后,促进了贝氏体相变和马氏体相变,使相变起始温度得到一定提高,贝氏体相变开始温度提高了约20℃,马氏体相变开始温度提高了约10℃,相变终了温度无明显变化。经850℃未再结晶区变形25%之后,慢冷(0.1~0.4℃/s)条件下得到了粒状贝氏体,在其上的岛状物更加细小、分布更均匀,板条或针状贝氏体铁素体尺寸变小;快冷条件(0.4~30℃/s)下得到的板条马氏体相对于针状马氏体比例增多;与未变形相比,相同冷却速度下得到的675装甲钢的显微硬度得到一定程度的提高。  相似文献   

3.
X120管线钢的连续冷却相变及显微组织   总被引:1,自引:0,他引:1  
采用Gleeble 1500热模拟试验机,模拟在1100 ℃变形30%和在850 ℃变形35%变形之后在0.5~50 ℃/s冷却速率下的X120管线钢的连续冷却过程,通过光学显微镜、透射电镜、维氏硬度计及显微力学探针分析,研究了X120管线钢的相变温度、显微组织及维氏硬度的变化规律.结果表明:当冷却速率在20~50 ℃/s时,试验钢的组织主要为下贝氏体和板条马氏体.下贝氏体的相变开始温度在470℃左右,终止温度在320~330℃.钢的硬度随冷却速率提高而逐渐增加,最高硬度达320 HV.  相似文献   

4.
针对当前不含Mo 低成本900 MPa级工程机械用钢的生产,采用Formastor-FⅡ相变仪,研究了900 MPa级工程机械用钢的连续冷却相变行为,分析了试验钢在连续冷却条件下的显微组织、显微硬度变化规律和贝氏体相变过程;结合热膨胀法和金相-硬度法绘制了试验钢的连续冷却转变曲线。结果表明:当冷却速率为0.25~0.5 ℃/s时,试验钢组织主要为铁素体和粒状贝氏体;冷却速率为1~2 ℃/s时,试验钢组织由粒状贝氏体和板条贝氏体组成;冷却速率为5~20 ℃/s时,试验钢组织为板条贝氏体和互锁状贝氏体,随着冷却速率的提高,板条贝氏体相变温度区间变窄,互锁状贝氏体相变温度区间变宽。冷却速率为5 ℃/s时,以板条贝氏体相变为主导,晶界形核速率高于晶内形核速率;冷却速率为10~20 ℃/s时,以互锁状贝氏体相变为主导,晶内形核速率高于晶界形核速率。冷却速率为0.25~2 ℃/s时,试验钢显微硬度随着冷却速率的增加而增加,硬度值从188HV升高到239HV;冷却速率为2~5 ℃/s时,出现硬度平台;冷却速率为5~20 ℃/s时,试验钢显微硬度随冷却速率的增加而增加,硬度值从240HV升高到270HV。  相似文献   

5.
终冷温度对不同成分700MPa级耐候钢组织和性能的影响   总被引:1,自引:1,他引:0  
针对两种不同成分的700MPa级超高强度耐候钢,利用金相显微镜、扫描电镜及透射电镜进行了组织观察,检验了硬度,研究了终冷温度在550~680℃之间变化对试验钢组织和性能的影响.结果表明,在其它工艺相同的情况下,终冷温度控制在约600℃,两种成分的试验钢均可得到良好的组织和性能;随着终冷温度的降低,钢的显微组织由多边形铁素体和少量珠光体转变为铁素体和贝氏体为主,铁素体基体上均匀分布着细小析出相;添加Mo的试验钢贝氏体含量高;硬度呈现先升高后降低的趋势.  相似文献   

6.
通过组织观察、力学性能测定等手段,分析了冷却速度、不同热处理工艺对550 MPa级钢的组织和力学性能的影响。结果表明,冷却速度小于1℃/s时,组织以准多边形铁素体为主;当冷却速度为1℃/s~15℃/s时,组织以粒状贝氏体为主;当冷却速度高于15℃/s时,组织以板条贝氏体为主。试验钢分别经900℃淬火、TMCP(控轧控冷技术)后,均采用了相同的时效工艺进行了时效处理。其中,淬火+时效态的试验钢组织以粒状贝氏体为主;经TMCP+时效的试验钢组织以针状铁素体、M/A岛和粒状贝氏体为主,且尺寸细小。淬火+时效的试验钢的屈服强度高于TMCP+时效的试验钢,但试验钢的伸长率无明显变化。  相似文献   

7.
试验钢采用低碳Nb、Ti、Ni、Cu、Mo等合金化设计理念进行X100管线钢化学成分设计,用真空感应电炉冶炼,并经试验轧机TMCP工艺控制轧制,轧后弛豫并在机后快速冷却线中进行快速冷却。冷却后采用显微分析方法和力学性能测试等手段研究终冷温度对试验钢微观组织和性能的影响。结果表明:随着终冷温度的降低试验钢显微组织的变化规律是由多边形铁素体向准多边形铁素体、粒状贝氏体、贝氏体铁素体、马氏体型转变。在418 ℃时出现板条状贝氏体组织且随着终冷温度降低,组织中板条状贝氏体的含量增加,贝氏体板条束的直径变小板条间距变窄,提高了试验钢的强度和韧性指标。301 ℃时出现马氏体组织,试验钢的强韧性有所降低。未发现终冷温度对原始奥氏体晶粒尺寸有影响,因为影响试验钢原始奥氏体晶粒度的主要因数为控轧工艺。  相似文献   

8.
利用SEM、电子探针、纳米压痕及高温变形热模拟机,研究低碳合金钢在不同热处理工艺下组织及力学性能的变化规律。结果表明,冷却速度不同时,合金钢中贝氏体的显微组织不同。当冷却速率为0.50~1.00℃/s时,钢中组织为准多边形铁素体和粒状贝氏体;冷却速度为3.00~10.00℃/s时,组织变为针状铁素体和板条贝氏体。针状铁素体组织的相变温度为620~600℃之间;试验钢中准多边形铁素体硬度最低,板条贝氏体硬度最高,贝氏体组织的本征硬度与维氏硬度均随冷却速度的增加而增大,且基体本征硬度对合金钢维氏硬度的变化起主要作用。  相似文献   

9.
对传统X80管线钢进行在线配分热处理,得到一种新型的含有贝氏体+M/A双相组织的大变形管线钢.采用力学性能测试、显微组织分析等方法研究了终冷温度对双相大变形管线钢的力学性能的影响.结果表明:随终冷温度的升高,贝氏体的含量降低,M/A的含量增加,实验钢的强度、硬度、冲击韧度和屈强比呈下降趋势;断后伸长率和均匀伸长率呈现增加的趋势.在终冷温度为350℃时,实验钢具有较高的强度、韧性和变形能力.  相似文献   

10.
控轧控冷工艺对低碳贝氏体钢组织性能的影响   总被引:5,自引:0,他引:5  
李国彬  刘昌明 《轧钢》2005,22(4):10-13
通过在中厚板轧机上进行的控轧控冷工艺试验,研究了不同控轧控冷条件对低碳贝氏体钢DB685组织和性能的影响,得出增大变形量可得到细小均匀的晶粒组织,使钢材的强韧性提高;增大轧后冷却速度能有效地提高钢板强度。并提出了工业生产DB685钢的控轧控冷工艺参数:终轧温度≤850℃,轧后冷却速度≥5℃/s,终冷温度≤650℃。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
韩磊 《腐蚀与防护》2015,36(1):84-90,94
综述了常见的电化学噪声数据处理方法,介绍了直流趋势剔除、统计分析、快速傅立叶变换(FFT)法计算功率谱密度(PSD)以及小波变换处理电化学噪声信号的基本过程,并阐释了各种数学处理及所得参数的物理意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号