首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在目标跟踪过程中,由于目标与传感器相对位置的变化以及目标不同部位的反射干扰,传感器测量数据中的测量噪声不再是严格意义上的高斯噪声,而变为具有长拖尾特性的闪烁噪声,而闪烁噪声的出现将严重影响线性卡尔曼滤波器的滤波性能。机动目标跟踪算法应同时考虑目标运动模式变化和闪烁噪声出现对滤波过程的影响。将滤波方程集合划分为包含不同目标运动模式的模型集合,提出了基于模型集合切换的机动目标跟踪(MSSM)算法。仿真结果验证了MSSM算法的有效性。  相似文献   

2.
针对闪烁噪声下存在未知机动的空间目标跟踪问题,将自适应鲁棒滤波技术嵌入到无迹卡尔曼滤波,设计自适应鲁棒无迹卡尔曼滤波(ARUKF),再利用ARUKF产生粒子滤波的重要性密度函数,从而得到一种自适应鲁棒无迹粒子滤波(ARUPF)算法。将ARUPF与瞬态跟踪模型相结合,对空间机动目标进行自主跟踪。实验结果表明,该算法在跟踪精度和鲁棒性方面优于传统的跟踪算法。  相似文献   

3.
基于UKF的窗口自适应Mean-Shift算法   总被引:1,自引:0,他引:1       下载免费PDF全文
杨帆  郑春红  杨刚 《计算机工程》2011,37(14):158-160
传统的Mean-Shift跟踪算法窗口固定,不能对尺度任意变化的目标进行有效跟踪.为此,提出一种多尺度理论与无味卡尔曼滤波器(UKF)相结合的视频跟踪改进算法.利用多尺度理论统计跟踪窗内的信息量,使用UKF对得到的信息量进行预测,通过修正后的信息量计算窗口变化比例系数,对尺度任意变化的目标进行跟踪.实验结果证明,该算法...  相似文献   

4.
针对闪烁噪声环境下机动目标跟踪的非线性、非高斯问题,提出了一种改进的高斯-厄米特粒子滤波算法.和传统的高斯-厄米特粒子滤波算法相比,在生成粒子集时,改进的高斯-厄米特粒子滤波算法采用高斯-厄米特滤波对当前时刻的各个粒子进行估计,将得到的估计值和协方差直接作为粒子滤波算法的粒子集及相应的协方差.仿真结果表明,改进的高斯-厄米特粒子滤波算法对闪烁噪声环境下的机动目标能够进行有效的跟踪,提高了跟踪精度.  相似文献   

5.
周锐  崔祜涛 《信息与控制》1997,26(3):180-185
建立了图象序列中目标形心位置测量方程,并针对目标机动性,采用一种解耦的并行卡尔曼滤波跟踪算法,即速度滤波器和加速度滤波器并行独立运算,加速度滤波器的输出用于校正速度滤波器的结果,根据探测到的目标机动性情况,加速度滤波器可以实时切换,降低了计算量和存储量,提高了跟踪的实时性,仿真结果表明该算法具有很好的跟踪性能。  相似文献   

6.
张楠  徐毓  张萍  彭焱 《计算机测量与控制》2006,14(2):242-243,255
Singer模型是典型的全局统计模型,其严重缺陷在于所采用的零均值时间相关模型和标准卡尔曼滤波算法不能完成对机动目标状态的正确估计1只有当目标做匀速直线运动时,动态误差的稳态值才为零,否则不为零;采用PF—Singer算法对机动目标进行跟踪。能够有效解决传统Singer模型存在的问题,提高其跟踪精度;通过仿真试验证实了该算法的有效性。  相似文献   

7.
设计了一种基于DSP的机动目标跟踪系统.该系统采用TMS320DM642作为其核心处理器,还包括BASLER A301fcCCD,以及大容量存储器.介绍了一种改进CamShift算法,利用目标边缘作为搜索特征,实现对机动目标自主式跟踪.在基于TMS320DM642的跟踪系统平台上实现了该跟踪算法,完成了跟踪系统的软、硬件设计.经过实验证明该跟踪系统工作性能稳定,能够有效跟踪机动目标.  相似文献   

8.
针对转弯率未知或变化条件下的精确跟踪问题开展研究,给出了基于UKF的自适应协同转弯跟踪算法,该算法充分利用了扩维技术和自适应渐消因子技术,不断实时估计转弯率,同时基于渐消因子调节过程噪声及其对应的增益,并对不敏卡尔曼滤波算法的采样范围进行自适应调节,使采样点更接近目标真实状态。仿真表明该算法在转弯率变化时获得了较好的跟踪性能,有效提升了对于转弯机动目标跟踪的准确性和稳定性。  相似文献   

9.
本文研究了支持向量回归(SVR)在机动目标跟踪中的应用,并与传统回归方法最小二乘法(LS)进行了比较。实验结果表明,利用支持向量回归可以以很高的精度对机动目标进行跟踪,并且有着很强的适应能力,是一种有潜力的跟踪方法。  相似文献   

10.
方差自适应机动目标跟踪算法研究   总被引:1,自引:0,他引:1  
针对机动目标弱机动时不能自适应调整,从而对弱机动目标跟踪精度不高的缺点,提出了一种改进的方差自适应机动目标跟踪算法。新算法将机动目标的运动状态分为弱机动状态和强机动状态,并通过新息平方的统计量和当前加速度估值进行机动自适应检测,能够根据目标当前的机动特性自适应调整过程噪声协方差矩阵,使运动模型与机动目标的当前运动状态相匹配,在保持对强机动目标跟踪性能的同时,实现了对弱机动目标更为精确的跟踪。仿真结果表明,改进算法对弱机动目标的跟踪性能明显优于当前统计模型。  相似文献   

11.
当载体处于高动态运动状态时,GPS接收机载波跟踪信号极易受到外部环境不确定因素的影响。若采用标准的无迹卡尔曼滤波 (UKF),在先验的噪声统计特性与实际的噪声统计特性不相符时,状态估计性能将变差甚至发散。针对上述问题,提出采用主从式自适应UKF的算法(AUKF)。AUKF能自适应调整过程噪声方差,从而达到减小模型估计误差、抑制滤波发散的目的。Matlab仿真结果表明,在高动态下噪声统计特性发生变化时,基于AUKF的载波跟踪算法具有较好的稳定性。  相似文献   

12.
为了提高动态定位精度,将一种改进的UKF(Unscented galman Filter)算法应用在GPS非线性动态定位解算中.将UKF算法与IEKF(Iterated Improved Kalman Filter)算法相结合,因此保持了基本UKF算法易于实现和收敛速度快的优点,同时由于滤波值是通过迭代扩展的卡尔曼滤波机制得到,进而更新值能更准确的逼近非线性系统状态概率密度函数,具有更高的精度.应用于GPS非线性动态滤波定位中,仿真结果表明:与UKF算法相比,算法能够明显提高定位精度.  相似文献   

13.
针对卫星的姿态和角速度估计问题,分别给出基于Unscented卡尔曼滤波(UKF)与推广卡尔曼滤波(EKF)的估计算法,并做了相应比较.为了避免欧拉角带来的奇异问题,UKF选用Rodrigues参数而EKF选用四元数参数法来描述姿态误差.考虑卫星的非线性模型,UKF采用Unscented变换而EKF采用线性化方法对姿态误差进行估计.利用陀螺和磁强计的测量信息,KF和EKF都可得到三轴稳定卫星的姿态估计值,但UKF的收敛速度高于EKF.数值仿真结果表明,当初始姿态存在大偏差时,所给出的UKF的滤波算法性能明显优于EKF.  相似文献   

14.
针对无人机收发端相对运动导致毫米波窄波束无法实时匹配这一问题,提出一种基于无迹卡尔曼滤波的三维波束跟踪方法。该方法首先将波束的俯仰角和方位角作为系统状态向量,对其进行无迹变换,获得采样点集。而后,根据采样点集计算出状态预测值和测量预测值,并以此为基础,根据计算出的卡尔曼增益更新状态向量,获得状态向量的最优估计值。仿真结果表明,此方法满足了无人机实时波束跟踪需求,有效地提高了三维环境下毫米波窄波束的跟踪精度。  相似文献   

15.
无味变换与无味卡尔曼滤波   总被引:4,自引:1,他引:4       下载免费PDF全文
综述了非线性估计问题的由来、无味变换(UT,Unscented Transformation)的基本思路与基本算法、各种衍变形式、σ点集的设计原则、无味卡尔曼滤波(UKF,Unscented Kalman Filtering)的基本算法及其各种改进算法、UT的本质、UKF与几种免微分非线性滤波方法的比较、UT与UKF的相关应用、针对几种UKF算法的仿真实例,以及目前在UT与UKF的研究中尚存在的一些问题和对今后研究的展望等;提出了笔者的一些最新研究成果和见解。  相似文献   

16.
迭代平方根UKF   总被引:3,自引:0,他引:3  
针对无迹卡尔曼滤波器(UKF)测量更新方法的不足,提出了一种对UKF 进行迭代测量更新的 方法,用于提高非线性系统状态估计的近似精度.利用平方根UKF 算法确保了迭代UKF 的数值稳定性.理论 分析与实验结果表明,迭代平方根UKF 算法不仅具有无需计算雅可比矩阵的优点,而且具有较高的非线性近 似精度、较强的数值稳定性和较高的运算效率;在相同数量级运算时间的条件下,其估计性能明显优于扩展 卡尔曼滤波器(extended Kalman filter,EKF)、UKF 和迭代UKF 等非线性滤波器.  相似文献   

17.
针对无人机可见光图像极小目标跟踪问题,本文提出一种基于改进卡尔曼滤波的 (Tracking before detection,TBD)跟踪方法。首先利用检测算法定位目标位置作为卡尔曼滤波的测量值,检测过程中的匹配相似度参数作为卡尔曼滤波测量噪声协方差矩阵的参照依据,其次利用卡尔曼滤波建立跟踪框架预测下一帧的目标位置,最后检测模块以预测位置为 参考位置进行局部搜索,完成整个检测跟踪过程。为了提高跟踪效率,本文根据检测和预测位置积累误差判决检测模式,误差超过门限值则采取全局检测模式消除积累误差,否 则使用局部检测模式,降低TBD跟踪算法的运算复杂度。仿真实验证明,本文方法可以有效检测跟踪极小目标,提高跟踪的实时处理能力。  相似文献   

18.
在非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波器误差会比较大而且可能会存在发散的问题,为了解决问题,引入了无迹卡尔曼滤波UKF(unscented Kalman filter).使用确定性样本的方法米处理非线性的问题,使得采样点的均值和方差完全符合实际的非线性系统的均值和方差,解决了惯性导航系统动基座传递对准在正常工作时的基本条件.采用UKF和扩展卡尔曼滤波EKF(Extended Kalman Filter)的计算机仿真结果表明:UKF与EKF相比,精度提高了2倍,时间少了10秒.  相似文献   

19.
UKF滤波器的强跟踪性研究   总被引:4,自引:0,他引:4  
与EKF滤波器相比较,UKF滤波器和强跟踪滤波器各自具有不同的特点,在基于计算机视觉的运动人手跟踪系统中往往需要将这些不同的特点相结合,本文揭示了UKF滤波器与强跟踪滤波器之间的关系,研究表明,在线性系统中,UKF滤波器是强跟踪滤波器;在非线性系统中,在一定的条件下,UKF是强跟踪滤波器,本文给出了一个充分条件,最后给出了部分实验结果。  相似文献   

20.
基于自适应卡尔曼滤波的机动目标跟踪算法   总被引:1,自引:0,他引:1  
在机动目标跟踪过程中,由于目标运动的不确定性,雷达系统接收的数据存在噪声,使预置目标运动模型通常很难得到较高的跟踪精度。为此,以自适应卡尔曼滤波为基础,将直角坐标系和球坐标系相结合,提出了一种混合坐标系下的自适应卡尔曼滤波算法。算法避免了两个坐标系变换引起的噪声统计规律变化问题,并针对目标发生大机动运动的情况,自适应的调整动态模型中机动目标运动参数。蒙特卡洛仿真结果表明,改进算法的收敛速度和对状态的估计精度均得到优化,并对机动目标具有较好的跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号