共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
闪烁噪声环境下机动目标跟踪的改进的高斯-厄米特粒子滤波 总被引:1,自引:0,他引:1
针对闪烁噪声环境下机动目标跟踪的非线性、非高斯问题,提出了一种改进的高斯-厄米特粒子滤波算法.和传统的高斯-厄米特粒子滤波算法相比,在生成粒子集时,改进的高斯-厄米特粒子滤波算法采用高斯-厄米特滤波对当前时刻的各个粒子进行估计,将得到的估计值和协方差直接作为粒子滤波算法的粒子集及相应的协方差.仿真结果表明,改进的高斯-厄米特粒子滤波算法对闪烁噪声环境下的机动目标能够进行有效的跟踪,提高了跟踪精度. 相似文献
5.
建立了图象序列中目标形心位置测量方程,并针对目标机动性,采用一种解耦的并行卡尔曼滤波跟踪算法,即速度滤波器和加速度滤波器并行独立运算,加速度滤波器的输出用于校正速度滤波器的结果,根据探测到的目标机动性情况,加速度滤波器可以实时切换,降低了计算量和存储量,提高了跟踪的实时性,仿真结果表明该算法具有很好的跟踪性能。 相似文献
6.
Singer模型是典型的全局统计模型,其严重缺陷在于所采用的零均值时间相关模型和标准卡尔曼滤波算法不能完成对机动目标状态的正确估计1只有当目标做匀速直线运动时,动态误差的稳态值才为零,否则不为零;采用PF—Singer算法对机动目标进行跟踪。能够有效解决传统Singer模型存在的问题,提高其跟踪精度;通过仿真试验证实了该算法的有效性。 相似文献
7.
8.
9.
本文研究了支持向量回归(SVR)在机动目标跟踪中的应用,并与传统回归方法最小二乘法(LS)进行了比较。实验结果表明,利用支持向量回归可以以很高的精度对机动目标进行跟踪,并且有着很强的适应能力,是一种有潜力的跟踪方法。 相似文献
10.
方差自适应机动目标跟踪算法研究 总被引:1,自引:0,他引:1
针对机动目标弱机动时不能自适应调整,从而对弱机动目标跟踪精度不高的缺点,提出了一种改进的方差自适应机动目标跟踪算法。新算法将机动目标的运动状态分为弱机动状态和强机动状态,并通过新息平方的统计量和当前加速度估值进行机动自适应检测,能够根据目标当前的机动特性自适应调整过程噪声协方差矩阵,使运动模型与机动目标的当前运动状态相匹配,在保持对强机动目标跟踪性能的同时,实现了对弱机动目标更为精确的跟踪。仿真结果表明,改进算法对弱机动目标的跟踪性能明显优于当前统计模型。 相似文献
11.
12.
为了提高动态定位精度,将一种改进的UKF(Unscented galman Filter)算法应用在GPS非线性动态定位解算中.将UKF算法与IEKF(Iterated Improved Kalman Filter)算法相结合,因此保持了基本UKF算法易于实现和收敛速度快的优点,同时由于滤波值是通过迭代扩展的卡尔曼滤波机制得到,进而更新值能更准确的逼近非线性系统状态概率密度函数,具有更高的精度.应用于GPS非线性动态滤波定位中,仿真结果表明:与UKF算法相比,算法能够明显提高定位精度. 相似文献
13.
针对卫星的姿态和角速度估计问题,分别给出基于Unscented卡尔曼滤波(UKF)与推广卡尔曼滤波(EKF)的估计算法,并做了相应比较.为了避免欧拉角带来的奇异问题,UKF选用Rodrigues参数而EKF选用四元数参数法来描述姿态误差.考虑卫星的非线性模型,UKF采用Unscented变换而EKF采用线性化方法对姿态误差进行估计.利用陀螺和磁强计的测量信息,KF和EKF都可得到三轴稳定卫星的姿态估计值,但UKF的收敛速度高于EKF.数值仿真结果表明,当初始姿态存在大偏差时,所给出的UKF的滤波算法性能明显优于EKF. 相似文献
14.
15.
程水英 《计算机工程与应用》2008,44(24):25-35
综述了非线性估计问题的由来、无味变换(UT,Unscented Transformation)的基本思路与基本算法、各种衍变形式、σ点集的设计原则、无味卡尔曼滤波(UKF,Unscented Kalman Filtering)的基本算法及其各种改进算法、UT的本质、UKF与几种免微分非线性滤波方法的比较、UT与UKF的相关应用、针对几种UKF算法的仿真实例,以及目前在UT与UKF的研究中尚存在的一些问题和对今后研究的展望等;提出了笔者的一些最新研究成果和见解。 相似文献
16.
17.
胡本川张国宾张建龙王勇 《数据采集与处理》2016,31(4):799-808
针对无人机可见光图像极小目标跟踪问题,本文提出一种基于改进卡尔曼滤波的
(Tracking before detection,TBD)跟踪方法。首先利用检测算法定位目标位置作为卡尔曼滤波的测量值,检测过程中的匹配相似度参数作为卡尔曼滤波测量噪声协方差矩阵的参照依据,其次利用卡尔曼滤波建立跟踪框架预测下一帧的目标位置,最后检测模块以预测位置为
参考位置进行局部搜索,完成整个检测跟踪过程。为了提高跟踪效率,本文根据检测和预测位置积累误差判决检测模式,误差超过门限值则采取全局检测模式消除积累误差,否
则使用局部检测模式,降低TBD跟踪算法的运算复杂度。仿真实验证明,本文方法可以有效检测跟踪极小目标,提高跟踪的实时处理能力。 相似文献
18.
在非线性、非高斯条件下进行动基座传递对准,如果采用卡尔曼滤波器误差会比较大而且可能会存在发散的问题,为了解决问题,引入了无迹卡尔曼滤波UKF(unscented Kalman filter).使用确定性样本的方法米处理非线性的问题,使得采样点的均值和方差完全符合实际的非线性系统的均值和方差,解决了惯性导航系统动基座传递对准在正常工作时的基本条件.采用UKF和扩展卡尔曼滤波EKF(Extended Kalman Filter)的计算机仿真结果表明:UKF与EKF相比,精度提高了2倍,时间少了10秒. 相似文献
19.
UKF滤波器的强跟踪性研究 总被引:4,自引:0,他引:4
与EKF滤波器相比较,UKF滤波器和强跟踪滤波器各自具有不同的特点,在基于计算机视觉的运动人手跟踪系统中往往需要将这些不同的特点相结合,本文揭示了UKF滤波器与强跟踪滤波器之间的关系,研究表明,在线性系统中,UKF滤波器是强跟踪滤波器;在非线性系统中,在一定的条件下,UKF是强跟踪滤波器,本文给出了一个充分条件,最后给出了部分实验结果。 相似文献
20.
基于自适应卡尔曼滤波的机动目标跟踪算法 总被引:1,自引:0,他引:1
在机动目标跟踪过程中,由于目标运动的不确定性,雷达系统接收的数据存在噪声,使预置目标运动模型通常很难得到较高的跟踪精度。为此,以自适应卡尔曼滤波为基础,将直角坐标系和球坐标系相结合,提出了一种混合坐标系下的自适应卡尔曼滤波算法。算法避免了两个坐标系变换引起的噪声统计规律变化问题,并针对目标发生大机动运动的情况,自适应的调整动态模型中机动目标运动参数。蒙特卡洛仿真结果表明,改进算法的收敛速度和对状态的估计精度均得到优化,并对机动目标具有较好的跟踪性能。 相似文献