首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In the past large synergistic effects have been reported for combinations of overbased sulfonate and sulfurized olefin in four-ball EP testing. In this study, we examined the effect of crystallinity on the formation of the tribofilms using X-ray absorption near edge structure (XANES) spectroscopy. Using this technique, we were able to differentiate the carbonate from organic carbon in C K-edge spectra, as well as, determining the difference between FeS, FeS2, RSO3, and SO42− in the sulfur spectra. While the overbased calcium sulfonates do not react strongly with the substrate there is evidence to suggest that the overbased sulfonate promotes decomposition of the sulfurized olefin on the surface to form both CaSO4 and FeS, which improves the EP performance of the lubricant. A putative intermediate is H2S from the decomposition of the sulfurized olefin which can react with O2 and the Fe-rich surface to form FeSO4 and FeS, respectively. A new ‘FeS’ species has been detected in the tribofilms that is believed to be a non-stoichiometric Fe-enriched FeS. Depending on the presence or absence of the overbased calcium sulfonate either FeSO4 or FeS formation is favored and changing the concentration of the crystalline, C300C, or amorphous, C400A, overbased calcium sulfonate from 5% to 10% does not appear to have any effects on FeS formation, although the C300C produces more Fe-enriched FeS than the C400A in the bulk.  相似文献   

2.
Phosphorous and sulfur L- and K-edge X-ray absorption near edge structure (XANES) spectra were recorded to characterize the surface chemistry of the tribofilms derived from a commercial zinc dialkyldithiophosphate (ZDDP) and its blends with overbased calcium and magnesium salicylate detergents. The results show that the chemical structure of the tribofilms generated from the mixture of ZDDP and detergents is different from that of the tribofilm derived from ZDDP alone. However, the two kinds of detergents inhibit ZDDP from forming tribofilm, producing thinner polyphosphate films. Though XANES analysis does not provide definite evidence to the existence of magnesium element in the tribofilms, it is likely that calcium or magnesium has been incorporated therein. Moreover, ion exchange reaction and the formation of zinc polyphosphate film may occur simultaneously during sliding. However, calcium or magnesium (poly)phosphates do not contribute to reduce friction and wear of a steel–steel pair.  相似文献   

3.
The interactions of neutral and overbased calcium sulfonate detergents with ashless thiophosphate oil additives under boundary lubrication were studied. The ashless additives used were neutral and acidic dialkyldithiophosphate (DTPs) and neutral triaryl monothiophosphate (MTP). This study uses three surface analytical tools to provide elemental and chemical information at the surface and in the bulk of the derived tribochemical films. The elemental composition of the tribofilms was studied using X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray analysis (EDX) (combined with scanning electron microscopy (SEM)). Corresponding P and S X-ray absorption near edge structure (XANES) spectroscopy was also used to provide further insight into the chemical composition of the films. SEM images of the derived tribofilms revealed that each film had distinct topographical features associated with it. XPS and EDX revealed that when oil is blended with calcium sulfonate, considerable amount of calcium is incorporated into all the tribochemical films. The phosphorus content of the tribofilm was reduced substantially when the overbased detergent was combined with MTP additive. XANES spectroscopy of the P L-edge provided direct evidence for the formation of calcium phosphate in tribofilms from the ashless additives in combination with the detergent.S K-edge revealed that sulfate is the main sulfur species formed in the bulk for all three tribofilms in the presence of the neutral detergent while a mixture of sulfite and sulfide species are formed when the overbased was used. S L-edge XANES showed that calcium sulfonate has undergone some oxidation at the surface. A more antagonistic effect was observed for MTP, with the formation of a very thin phosphate film.Tribological performance was also evaluated. Surprisingly, combination of the neutral detergent with any of the AW additives did not result in any significant change in wear to the substrate. For MTP plus neutral detergent, the thinner phosphate film produced, combined with very little change in wear protection confirms that, not only is the tribochemistry dominated by calcium sulfonate, but also confirms the anti-scuffing and AW properties that are associated with it as well. Even more surprising, was the significant decrease in wear when the overbased detergent is used. This illustrates not only that the tribochemistry was dominated by the detergent, but also the exceptional AW properties of calcium carbonate.  相似文献   

4.
The chemical constitution of tribofilms, generated from zinc dialkyldithiophosphate (ZDDP) and ashless dialkyldithiophosphate (DDP), has been examined by X-ray Absorption Near Edge Structure (XANES) spectroscopy. The identification of spectral features and interpretation of the results for P, O, Fe, and S species are given, allowing an overall mechanism to be deduced. The role of Fe in these films was investigated in some detail using P L-edge, O K-edge and Fe L-edge XANES spectra. From the P L-edge XANES spectra, the DDP films are uniformly very short chain iron polyphosphates. In contrast, the ZDDP films are formed initially as short chain polyphosphates; but after more rubbing, a bilayer phosphate film is formed with long chain Zn polyphosphates on the surface and shorter chain in the bulk of the film. The O K-edge XANES spectra show that there is, as expected, more Fe in the DDP phosphate films than in the ZDDP phosphate films. The S K-edge spectra of ZDDP films show the presence not only of ZnS as previously observed, but also the presence of FeS for the first time in the early stages of film formation. The predominant S species in the DDP films is FeS.  相似文献   

5.
Due to the high cost of hydroforming equipment, attempts have been made to model this process using bench testing. While tensile and twist compression tests have yielded promising results, they do not simulate any single metal forming process. In this study we investigated the use of expansion zone, guiding zone, and twist-compression tests to simulate hydroforming processes and evaluated various overbased sulfonates and organic friction modifiers performance. The amorphous overbased magnesium sulfonate improved the performance of the hydroforming oil in the expansion zone and provided no harm in the guiding zone, while the crystalline overbased calcium sulfonate provided no harm in the expansion zone and improved performance in the guiding zone. It was found that the friction modifiers tested display an antagonism, where, as the expansion zone performance increased, the guiding zone performance decreased. Additionally, we found in twist-compression testing that the initial coefficient of friction displayed a small correlation with the guiding zone test (from r = 0.26–0.47), while the failure time displayed a small correlation with the expansion zone test (r = 0.36–0.40).  相似文献   

6.
Interactions between various engine oil additives including dispersant, detergent, antiwear/antioxidant, and viscosity index improvers have been investigated through changes in the 31P-NMR and IR spectra. Significant changes in the 31P-NMR and IR spectra of zinc dialkyldithiophosphate (ZDDP) have been observed by varying the blending order of additives. Dispersant-detergent (polyisobutylene succinimide-calcium overbased sulfonate) and viscosity index improver-detergent (dispersant olefin copolymer-calcium overbased sulphonate) interactions were found to be strong and irreversible in nature. Variable temperature 31P-NMR spectra have provided enough evidence to suggest that the actual performance of an additive may not be decided by its bulk interactions with other additives at room temperature, and that tribochemical reactions occurring at higher temperature play a greater role.  相似文献   

7.
Najman  M.N.  Kasrai  M.  Bancroft  G.M. 《Tribology Letters》2003,14(4):225-235
This study examines the interaction of sulfur-based oil additives on steel. Sulfurized isobutylene, dialkyldithiocarbamate and sulfurized esters were the additives investigated in this report. For the first time, X-ray absorption near edge structure (XANES) spectroscopy has provided detailed insight into the chemistry of both the thermo-oxidative and tribochemical films generated from these additives. It was found that the chemical nature of these films was strongly dependent on the operating environment for the additives. The XANES revealed that thermally, all three S additives reacted very similarly with steel to form a film mainly comprised of iron sulfate at temperatures as low as 100 °C. The ample supply of diffused oxygen from the base oil along with oxide naturally present on the substrate allowed for the complete oxidation of the S from the decomposed additive to iron sulfate. Tribochemical films were comprised of different forms of sulfur than observed for the thermo-oxidative films. The moderate AW conditions yielded a mixture of both oxidized and reduced forms of sulfur, with pyrite, FeS2, being the major constituent. Rubbing between the steel pin and the substrate partially depleted the oxide layer present, allowing the additive to interact intimately with the fresh substrate, yielding FeS2. Under extreme-pressure conditions, complete removal of the oxide layer occurred with a drastic increase in the interfacial temperatures between the pin and v-block, allowing for the complete thermal decomposition of FeS2 to FeS to occur. AFM imaging of the AW films revealed the presence of tiny smooth domains randomly oriented, which were completely different from the pad-like structures observed for AW films generated from a typical ashless thiophosphate additive. The inability of the sulfur-based additives to form large pad-like structures, which can ultimately support the load, resulted in poor AW protection to the metal.  相似文献   

8.
Zinc dialkyldithiophosphates (ZDDPs) from very effective antiwear films in boundary lubrication applications. In most cases, however, the ZDDPs do not work alone. They are formulated with many other additives to provide the performance required by today's modern oils. X-ray absorption near-edge spectroscopy (XANES) has been used to study the antiwear films formed from the commonly used combination of ZDDP and calcium sulfonate in both neutral and basic forms. The results are presented in two papers: Part 1 for the phosphorus species and Part 2 for the sulfur species. XANES showed conclusively that in the presence of LOB (low overbased) or HOB (high overbased) calcium sulfonate under sliding conditions, ZDDPs do not form long-chain polyphosphates that have been associated with antiwear action. Instead, short-chain polyphosphates calcium phosphate are formed. The relative amounts of calcium phosphate formed depend on the ester group of the ZDDP: aryl > n-alkyl > sec-alkyl. Interestingly, this order of ester groups is inversely related to the antiwear effectiveness of the ZDDPs. Thus, it is probable that the addition of either LOB or HOB calcium sulfonate to ZDDP will result in a decrease in antiwear effectiveness of the additive mixture compared to the ZDDP by itself. Wear data support this conclusion. It is suggested that the elimination of long-chain polyphosphates and the formation of calcium phosphates in the tribofilm leads to this decrease in antiwear effectiveness, the latter by abrasion of the antiwear film.  相似文献   

9.
It has been reported in the literature that overbased detergents can possess good antifriction and antiwear properties although the origins of these properties are not fully clear. In practice, over-based detergents are colloidal dispersions and this may be important in determining their properties and mechanism of action.

In the current study, the lubricating properties of commercial, overbased magnesium and calcium sulfonates were measured in thin film, lubricated conditions and compared to a neutral sulfonate additive. A range of techniques was employed to evaluate the tribological performance of solutions of these additives. Film thickness measurements were carried out using optical interferometry and in-contact visualization, while friction and wear measurements complemented the study.

It has been found that, when operating in thin film conditions, overbased detergents deposit solid-like boundary films on the rubbing surfaces. These films form in both rolling and mixed rolling/sliding conditions and, unlike many other colloidally-formed boundary films, are able to survive in high speed, thick film conditions. During formation, the film rapidly reaches a thickness corresponding to one colloid particle diameter, between 10 and 20 nm. After prolonged rubbing, however, the film thickness reaches the equivalent of three particle diameters. No such thick boundary films are observed with the neutral sulfonate.

The boundary films formed by overbased detergents produce a significant reduction in wear. However, for the very smooth surfaces used in this study, they also result in an effective roughening of the very smooth surfaces studied. This leads to an increase in friction in the intermediate speed region by promoting solid-solid contact in thin fluid film conditions.  相似文献   

10.
高碱值硫化烷基酚钙抗磨机制分析   总被引:2,自引:0,他引:2  
颜皓  梁海萍  张法智 《润滑与密封》2007,32(9):100-102,106
采用四球机、高频往复试验机(HFRR),考察了加入清净剂高碱值硫化烷基酚钙(T115B)前后油品抗磨性能的变化;并采用SEM和EDS分析了摩擦副表面的形貌和元素分布情况。结果表明,高碱值硫化烷基酚钙有助于增加油品的润滑性能,并且随着加入量的增加,抗磨性能逐渐增加;高碱值硫化烷基酚钙中的S元素与金属表面发生化学反应,生成了金属硫化物,从而提高了油品的抗磨性能。  相似文献   

11.
Han  Ning  Shui  Lin  Liu  Weimin  Xue  Qunji  Sun  Yushuang 《Tribology Letters》2003,14(4):269-274
The influence of the addition of overbased calcium sulfonate detergent (OBCaSu) on the antiwear properties of sulfuride olefin (SO) and tricresyl phosphate (TCP) was studied with wear tests and surface analyses. Wear tests were conducted on a four-ball wear test machine. The formation of a protective film on the worn surface was examined using scanning electron microscopy (SEM) and X-ray photoelectron spectrometry (XPS). Test results indicate that OBCaSu can improve the antiwear properties of SO and TCP. Surface analyses found that the lubricating mechanism of OBCaSu and TCP is different from that of OBCaSu and SO. In the case of the lubrication of OBCaSu plus SO, the improved antiwear property is caused by the formation of a surface deposition film containing CaCO3 from the OBCaSu and the neutralization of OBCaSu, which could prevent excessive corrosion wear. In the case of the lubrication of OBCaSu plus TCP, calcium phosphate was formed and incorporated into the surface film, which possesses good antiwear characteristics.  相似文献   

12.
A novel borate ester containing heterocyclic group, 2,5-bis((2-((6-octadecyl-1,3,6,-dioxazaborocan-2-yl)oxy)propyl)thio)-1,3,4-thiadiazole (BDOT), was prepared and characterized. Its tribological properties and synergistic effect with zinc dialkyl dithiophosphate were evaluated using a four-ball tribometer. The results show that the novel borate additive possesses excellent anti-wear and friction-reducing properties compared with the performance of ZDDP. BDOT combined with ZDDP has a synergistic effect on the tribological properties, especially for the friction-reducing performance. The chemical state of nitrogen, boron and sulfur in thermal films and tribofilms was analyzed by XPS and XANES. XPS analysis suggests that the additive forms a protective film on the rubbing surfaces which is composed of B2O3, BN, FeSO4, FeS2 and Fe2O3. However, the B K-edge XANES shows that no BN was detected in the film. The synergistic effect between BDOT and ZDDP may be due to the formation of right concentration of FeS and FeSO4 in the tribofilm.  相似文献   

13.
This paper deals with the study of deposit and friction films of overbased calcium sulphonate diluted in mineral oil, on metal surfaces. The technique used for this work is Infrared Reflection Absorption Spectroscopy by Fourier Transform and Polarisation Modulation (PM-IRRAS or PM FTIR). The spectra obtained from this method contain only information on the absorption occurring in the immediate neighbourhood (⩽40 nm) of the metallic substrate and allow the average orientation for molecules adsorbed on metals to be deduced. This study shows that the adsorption of overbased calcium sulphonate on a steel surface leads to a preferential orientation of the sulphonate chains perpendicular to the surface and to a preferential orientation of the carbonate, the c axis being perpendicular to the surface. During friction, the sulphonate chains are ejected from the contact zone. We observed that the boundary film consists mainly of calcium carbonate, which crystallises into calcite.  相似文献   

14.
X-ray absorption near edge structure (XANES) spectroscopy has been used to characterize the chemistry of thermal films on steel samples, which were generated from a mineral base oil containing a zinc dialkyl dithiophosphate (ZDDP) additive. These films were formed at 150 °C by immersing steel coupons in ZDDP oil solutions. The phosphorus L-edge XANES spectra show that these films are composed of polyphosphates, unreacted ZDDP and other thiophosphate intermediates. Phosphorus K-edge FY XANES was used to monitor the thickness of these films, and the data are consistent with thickness derived by focussed ion beam (FIB) milling and SEM imaging. The sulphur K-edge TEY and FY XANES spectra show that these films are composed of different sulphur components, which depend upon the formation times. The surface morphology of these films was investigated using atomic force microscopy (AFM). These images show that the surface morphology of the thermal films changes with the formation time. 31P NMR spectra show that both primary and secondary ZDDP decomposes gradually at 150 °C.  相似文献   

15.
Abstract

The authors report, for the first time, a comprehensive chemical and mechanical characterisation of antiwear films prepared from a fully formulated oil that is commercially available. Wear increases substantially when using the fully formulated oil compared to using ZDDP alone. X-ray absorption near edge structure (XANES) spectroscopy at the P K- and L-edges, S K-edge, Mo L-edge, B K-edge, Ca L-edge, O K-edge and Fe and Zn L-edges permits chemical characterisation of the major elements in the thin films. Ca phosphates, ZnS and MoS2 are the main P and S species formed, contrary to previous studies involving only ZDDPs, whereby Zn phosphates are the dominant species. These findings can be accounted for by using the hard and soft acid and bases (HSAB) principle. Small amounts of CaCO3 are present, but no B was detected, implying it does not become incorporated into the film. Atomic force microscopy (AFM) reveals continuous pads with a relatively uniform indentation moduli (125 ± 10 GPa), separated by trenches that are essentially comprised of uncovered steel substrate.  相似文献   

16.
The aim of this study was to examine the tribological behavior of amorphous overbased calcium sulfonate (AOBCS) and crystalline overbased calcium sulfonate (COBCS, transformed from the AOBCS) as additives in lithium complex grease. The transformation product of the calcium carbonate polymorph from AOBCS was calcite, as determined by Fourier transform infrared spectroscopy. Tribological properties were evaluated by an oscillating reciprocating friction and wear tester and a four-ball tester. The results showed that the addition of COBCS can dramatically improve both the antiwear performance and the friction-reducing and load-carrying properties of the base grease. However, improvement of the tribological properties of the base grease by AOBCS was highly dependent on the concentrations added and the loads applied. The tribological properties of the base grease were improved more by the addition of COBCS than by the addition of AOBCS. X-ray photoelectron energy spectrometry and thermogravimetric analysis revealed that both AOBCS and COBCS underwent complicated tribochemical reactions in the base grease and that chemically reactive films consisting of CaCO3, CaO, iron oxide and organic compounds were formed on the worn surfaces. Taken together with the results of the tribo-tests, we suggest that transformation of the calcium carbonate polymorphs was the main factor in improving the tribological properties of lithium complex grease. The transformation of calcium carbonate polymorphs can broaden the application of AOBCS as an extreme pressure/antiwear additive in greases under boundary lubrication conditions.  相似文献   

17.
Phosphorus L-edge and oxygen K-edge X-ray PhotoEmission Electron Microscopy (XPEEM) have been used to characterize the chemical nature of the cation present in tribochemical films via comparison with model Fe2+ and Zn2+ compounds. The results are contrasted to the P L-edge, P K-edge and S K-edge XANES data. The findings suggest that antiwear pads containing long chain zinc polyphosphate glass are formed at the points of asperity contact, and a thin, short chain zinc polyphosphate film is formed where no asperity contact is made. SEM/EDX measurements helped to elucidate the distribution of the elements, and strong spatial correlations were observed between P, O, Zn and S in the pads, indicating that they are composed mostly of zinc polyphosphates, especially near the surface. The zinc polyphosphate antiwear pads are characterized by a much lower modulus than that observed on the thin film regions, the latter being characteristic of the substrate steel.  相似文献   

18.
高碱值磺酸盐是生产复合磺酸钙基润滑脂的重要原料,其质量是决定复合磺酸钙基润滑脂产品品质的关键因素之一.为选择合适的高碱值磺酸盐,考察不同高碱值磺酸盐从无定型碳酸钙转化为方解石型碳酸钙的转相时间、稠化能力,以及不同高碱值磺酸盐制备的润滑脂的滴点、锥入度、钢网分油和滚筒安定性能;筛选出的高碱值磺酸盐制备的复合磺酸钙基润滑脂...  相似文献   

19.
Fe3Si, Fe3Si alloys containing Cu were fabricated by arc melting followed by hot-pressing. The friction and wear behaviors of Fe3Si based alloys with and without Cu addition against Si3N4 ball in water-lubrication were investigated. The friction coefficient and the wear rates of Fe3Si based alloys decreased as the load increased. The wear rate of Fe3Si was higher than that of AISI 304. The addition of Cu can significantly improve the friction and wear properties of Fe3Si based alloys and substantially reduce the wear rates of Si3N4 ball. The wear rate of Fe3Si–10%Cu was 2.56 × 10−6 mm3 N−1 m−1 at load of 20 N and decreased to 1.64 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear rate of Si3N4 ball against Fe3Si–10%Cu was 1.41 × 10−6 mm3 N−1 m−1, while the wear rate of Si3N4 ball against AISI 304 was 5.20 × 10−6 mm3 N−1 m−1 at load of 90 N. The wear mechanism was dominated by micro-ploughing. The combination of mechanical action (i.e., shear, smear and transference of Cu) and tribochemical reaction of Si3N4 with water was responsible for the improved tribological behavior of Fe3Si alloys containing Cu under high loads.  相似文献   

20.
Two novel triazine derivatives 2-tris(2-ethylhexyl)-3,3′,3″-(1,3,5-triazine-2,4,6-triyl)-tris(sulfanediyl)tripropanoate (TE TST) and 2-ethylhexyl-3-(4,6-dimercapto-1,3,5-triazin-2-ylthio) propanoate (EDTYP) were synthesized. Their tribological properties in synthetic diester were evaluated using a four-ball tribometer, and the thermal films and tribofilms were investigated using X-ray absorption near-edge structure (XANES) spectroscopy. The copper corrosion-inhibiting performance was explored as well. The additives can improve the extreme pressure performance of base stock. TETST displays good antiwear property and EDTYP possesses excellent friction-reducing ability. Surface analysis indicated that the thermal films are exclusively composed of FeSO4, and the tribofilms are constituted by FeS, FeS2, and FeSO4. The mechanism obtained from the XANES analysis fit well with the results of tribological tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号