共查询到20条相似文献,搜索用时 22 毫秒
1.
热冲压成形零件质量控制因素分析 总被引:4,自引:1,他引:4
热冲压成形技术是提高高强度钢板塑性成形能力,保证冲压零件尺寸精度以及提高冲压零件的强度级别的新型成形技术。本文在介绍超高强度钢板的热冲压成形工艺流程及应用的基础上,对直接影响热冲压零件成形质量的主要因素进行了识别和深入分析,讨论了模具材料、模具冷却设计及热冲压工艺参数如奥氏体化温度、保温时间、冷却速度和保压时间对热冲压零件质量的影响趋势,为车身制造中热冲压成形零件质量控制提供参考。 相似文献
2.
为了降低超高强钢板在热冲压过程中的减薄率,以车轮侧盖为研究对象,设计了4种预成形件结构方案,通过有限元模拟分析预成形件形状、尺寸对减薄率的影响,基于模拟结果,进行了预成形件热冲压实验。结果表明:热冲压件的显微组织为板条马氏体,显微硬度达到460 HV以上;零件球窝处材料减薄率最大,预成形有利于降低材料减薄率;预成形件储料面积越大,热冲压件材料减薄率越小;预成形件为深度为22.8 mm的圆拱形储料结构且切角时,材料减薄率最小,为11.67%,壁厚均匀性较好。实际热冲压实验结果和数值模拟结果基本一致。 相似文献
3.
为准确预测超高强钢预缺口产品在辊压成形中的回弹现象,通过模拟和实验相结合的方法,讨论了预中孔对辊压成形中超高强度钢板回弹的影响。建立了预开槽汽车门槛件的有限元模型,并通过连续辊压实验验证了其精度。采用超高强钢MS1300的拉伸实验确定的可变弹性模量的数学模型构建了有限元模型,发现使用可变弹性模量可以将孔区域的回弹预测精度提高15%。设计了几种成形方案,以研究不同特征对孔区回弹的影响。结果表明:预伸孔的存在降低了回弹,且在汽车门槛的不同位置,效果不同。随着机架数量、板带厚度和孔径的增加,机架间距和孔间距的减小,预冲孔所在位置的回弹减小。通过研究希望能减少辊压实际生产中孔对回弹的影响,提高预切断面的成形精度。 相似文献
4.
采用膨胀仪测定了一种1800 MPa级冷轧热成形钢的相变点;通过OM、SEM、EBSD等方法检测了其经热轧和热成形后的显微组织,采用CCT-AY-Ⅱ型钢板连续退火机对其进行热处理,测量了其力学性能。结果表明:热轧后实验钢的组织为珠光体和铁素体,热成形后的组织为马氏体和极少量奥氏体。冷轧热成形钢在850℃保温淬火后其综合力学性能最好,抗拉强度最高达到1845 MPa,屈服强度也达到了1033 MPa,伸长率达到了7.4%;由EBSD分析可知,850℃保温后实验钢具有细小的原始奥氏体晶粒和马氏体组织及较高密度的小角度晶界,这是其保持较高的强度和伸长率的原因。 相似文献
5.
本文结合工业生产实际,采用光学显微镜与维氏硬度计,研究加热温度、保温时间和合模温度对超高强热成形钢组织及性能的影响。结果表明:当保温时间为3 min时,加热温度对试验钢性能影响较大,随着加热温度的升高,马氏体转变量不断增加,同时马氏体板条长度及束条宽度不断增大,试验钢的硬度也不断增加。当加热温度为900℃、保温时间为4 min时,合模温度在650~730℃范围内,组织均为马氏体+铁素体,随着合模温度的升高,铁素体的含量逐渐减少,马氏体含量逐渐增加,试验钢的硬度大幅增加。 相似文献
6.
采用Gleeble-3800热模拟试验机研究了含有W、Mo等多种碳化物形成元素的新型中合金超高强度钢的热变形行为,变形温度为800~1200℃,应变速率为0.01~10 s^(-1),最大应变量为0.7。热模拟试验得到了试验钢的高温流变应力曲线,其变形抗力随变形温度的降低和应变速率的提高而增加。在变形温度1000℃以上进行热压缩时,试验钢可发生动态再结晶;变形温度的升高会促进晶粒粗化及二次再结晶的发生,而应变速率的提升有利于促进再结晶晶粒的细化和均匀化。根据试验钢的高温流变应力曲线,计算出试验钢的热加工本构方程,并建立了真应变为0.4的热加工图。结合微观组织演变的分析结果,得出试验钢的最佳热加工区域应为:变形温度为1000~1100℃、应变速率为1~10 s^(-1)。 相似文献
7.
8.
构建了自阻加热在线冲压试验平台,设计并制造了U形弯曲成形模具,对自阻加热冲压技术进行了工艺验证试验。结果表明:仅需对模具、夹具进行适当创新设计,自阻加热冲压就可以在传统设备上进行,从而显著降低热冲压件的生产成本。为了制造汽车车身上的高强度钢U形梁类零件,设计了一套自阻加热冲压工艺装备:专用弹性夹持装置可以快速夹紧、卸下金属板坯,同时提供弹性拉力,消除细长板坯由于热胀冷缩或自重引起的弯曲,并减小冲压过程对通电回路的冲击;切断弯曲模具两端的冲裁结构与压边顶件的机构配合,可以实现工件的自动顶出,从而提高生产效率。 相似文献
9.
10.
《全自动高强钢间接热成形生产线》(上)见《锻造与冲压》2020年第20期间接热成形生产线核心设备间接热成形生产线的核心设备有热成形压机、自动化搬运系统、加热炉、水冷模具。行业内以压机为主导,自动化、加热炉等均由压机厂家配套供应。图8为典型间接热成形生产线的核心设备布置图。热成形压机间接热成形压机相较于直接热成形压机有以下几个特点。 相似文献
11.
以22Mn B5高强度钢U形件为例,建立B柱热冲压有限元模型,并通过Deform-3D软件对热冲压过程进行数值模拟。设定保压结束后U形件的最大减薄率以及最大温差作为评价指标,基于数值模拟和3因素5水平正交实验方法,分析了在多指标因素不同水平下冷却系统参数对保压结束后U形件的最大减薄率以及最大温差大小和分布规律的影响,获得参数的优化组合:冷却管道直径为Φ8.5 mm,两管道孔中心间距为30 mm,管道孔中心与模具型面距离为13 mm。通过热冲压实验,得到保压结束后U形件的最大温差为124.5℃,最大减薄率为4.73%,验证了优化参数组合的有效性,为热冲压模具冷却系统设计优化提供了理论参考。 相似文献
12.
采用维氏硬度测试、拉伸性能测试等方法研究了不同拉伸预变形量对2219铝合金在177℃时效时的力学性能影响,并利用光学显微镜、扫描电镜和透射电镜观察了其微观形貌和显微组织。结果表明:合金经过预拉伸变形后晶粒伸长,时效后晶粒中析出大量的正交片状析出相,合金强度明显提高;增大预变形量可以促进过渡相θ″向θ'的转变析出,15%预拉伸样品在6 h即达到峰值时效,屈服强度和伸长率由时效前的322.9 MPa、14.0%变为368.8 MPa和9.6%;在同一时效时间,合金的强度随着预拉伸量的增加而提高,伸长率降低。 相似文献
13.
正多边形盒零件冲压成形凸缘变形区的应力分布计算 总被引:4,自引:2,他引:4
首先给出正多边形盒零件凸缘变形区的应力分布式 ,接着分析了凸缘变形区的应力变化规律 ,并以0Cr18Ni9板材和方盒零件为算例给出了凸缘变形区的应力分布曲线。正多边形盒零件凸缘变形区圆角部分的拉深变形是发生皱曲和破裂之源并向直边部分转移材料 ,使直边部分松弛乃至皱曲。因此 ,对于皱曲通常选择设置压边装置 (压边圈、拉深筋等 )来解决。对于破裂通常选择增大侧壁间圆角半径或多次拉深来解决。正多边形盒零件冲压成形最好采用分区 (分块 )变压边力拉深或分区 (分块 )恒压边力拉深 相似文献
14.
超高强度钢板热成形板料温度的解析模型研究 总被引:3,自引:2,他引:3
在淬火热冲压工艺中,超高强度钢板在热冲压过程的传热情况直接影响着板料的塑性成形能力及成形零件的力学性能.本文运用传热学基本理论对淬火热冲压成形过程中的传热进行分析,根据其传热特点将钢板与外界的传热过程分为3个阶段:与空气传热、与模具传热以及与空气和模具混合传热,建立了各阶段的解析模型,然后通过热冲压成形试验对该模型的正确性进行了验证.结果表明,热冲压过程中钢板温度呈指数变化,所提出的解析模型与试验研究结果吻合,能够比较真实地反映钢板温度的变化规律,为淬火热冲压成形工艺的深入研究与应用提供必要而可靠的依据. 相似文献
15.
16.
为了解决钛合金钣金件成形困难、易起皱、易破裂等问题,以异形曲面钛合金钣金件为研究对象,给出了热成形工艺方案。首先采用热冲压预制零件的主体部分,然后采用热校形工艺调整头部折弯边角度;进一步通过正交试验方法建立了正交试验组,采用极差分析法确定了各因素影响程度的主次关系,并得到了最优的工艺参数水平组合;最后,通过试验验证了工艺参数的有效性。研究结果表明:成形温度对钣金件成形质量的影响较大,温度过低,容易起皱,温度过高,软化严重,成形精度不高,TA15钛合金的最优成形温度为670℃;最优工艺参数组合下,钣金件厚度较均匀,最大偏差仅为0.1 mm,说明热冲压成形工艺可以满足钛合金曲面类零件的厚度要求。 相似文献
17.
18.
19.
采用数值模拟方法分析了筒形件自由锻马杠扩孔成形过程和热辗扩成形过程,对比分析了两种变形模式对筒形件变形规律的影响。研究结果表明:相同壁厚锻比的条件下,局部加载间歇变形模式的马杠扩孔成形的筒形件横剖面上等效应变沿周向周期性分布,其大小沿径向从内到外逐渐降低;而局部加载连续变形模式的热辗扩成形的筒形件横剖面上等效应变沿周向均匀分布,其大小在外径处最高,内径处次之,壁厚中心最低。对比发现:两种变形模式中壁厚中心的等效应变值相当,且热辗扩成形的筒形件壁厚中心的等效应变略大。结合热辗扩成形试验结果发现:在相同壁厚锻比的条件下,热辗扩成形工艺可以替代马杠扩孔成形工艺来成形筒形件,在保证环坯充分锻透的前提下,获得变形均匀的筒形件。 相似文献
20.
热成形技术因结合热锻和冲压的技术优势,已经在汽车零部件制造工艺中获得了广泛的关注和应用。在热成形生产中,产品在高温下成形伴随非等温淬火过程容易出现起皱、破裂等成形质量缺陷。本文围绕高强度热成形钢板22MnB5材料相变过程、机械性能进行了相关研究,基于深冲盒试验进行热成形工艺改进优化,在热成形生产工艺过程中增加相应的转运冷却环节,使完全奥氏体化后的板料在冲压淬火前降低至优化冲压温度。实验表明:改进后的热成形工艺对冲压产品的成形性有明显改善,可有效降低和消除起皱、破裂等缺陷,材料微观马氏体转化更加细致充分,可获得抗拉强度达到1500MPa以上,硬度达到450HV以上的热成形产品,满足连续热冲压成形自动化生产过程工艺改进要求。 相似文献