首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a methodology to minimize the total cost of buying power from different energy producers including renewable energy generations particularly within the context of a microgrid. The proposed idea is primarily based on the controlled operation of a battery energy storage system (BESS) in the presence of practical system constraints coupled with our proposed cost optimization algorithm. The complex optimization problem with constraints has been solved using the well-known concept of dynamic programming. The methodology has been assessed using actual power and price data from six different power generation sites and cost reduction has been calculated for a number of BESSs by varying their energy and power capacities. Twofold benefits of the proposed methodology lie in minimizing the total cost along with the constraint-based efficient operation of the BESS. Simulation results depict that the given power demand at a particular region can be fulfilled properly at all times using a BESS and multiple power generation.  相似文献   

2.
With the high penetration of renewable energy, new challenges, such as power fluctuation suppression and inertial support capability, have arisen in the power sector. Battery energy storage systems play an essential role in renewable energy integration. In this paper, a distributed virtual synchronous generator (VSG) control method for a battery energy storage system (BESS) with a cascaded H-bridge converter in a grid-connected mode is proposed. The VSG is developed without communication dependence, and state-of-charge (SOC) balancing control is achieved using the distributed average algorithm. Owing to the low varying speed of SOC, the bandwidth of the distributed communication networks is extremely slow, which decreases the cost. Therefore, the proposed method can simultaneously provide inertial support and accurate SOC balancing. The stability is also proved using root locus analysis. Finally, simulations under different conditions are carried out to verify the effectiveness of the proposed method.  相似文献   

3.
Development of lithium batteries for energy storage and EV applications   总被引:3,自引:0,他引:3  
The results of the Japanese national project of R&D on large-size lithium rechargeable batteries by Lithium Battery Energy Storage Technology Research Association (LIBES), as of fiscal year (FY) 2000 are reviewed. Based on the results of 10 Wh-class cell development in Phase I, the program of Phase II aims at further improvement of the performance of large-size cells and battery modules, and the formulation of roadmaps toward worldwide dissemination of large-size lithium secondary batteries. In addition to the above R&D programs, a new target was presented particularly for the near-term practical application of several kWh-class battery modules in FY 1998.

For the large-size battery modules, two types of 2 and 3 kWh-class battery modules have been developed for stationary device and electric vehicle applications, respectively. The battery modules for both types have achieved most of the targets other than cycle life. Currently, further improvements in the cycle life of the cells themselves are being pursued. For this purpose, the materials for cathodes and anodes, the shapes and structures for batteries and the methods for cell connection are being re-investigated.

The development of middle-size battery systems for mini-size electric vehicles (EVs), as well as for demand-side stationary device applications is under way. These battery systems have been fabricated and their fundamental performance confirmed. They are now being subjected to field tests.  相似文献   


4.
A battery energy storage system (BESS) is usually integrated with a wind farm to smooth out its intermittent power in order to make it more dispatchable. This paper focuses on the development of a scheme to minimize the capacity of BESS in a distributed configuration using model predictive control theory and wind power prediction. The purpose to minimize the BESS capacity is to reduce the overall cost of the system as the capacity of BESS is the main cost driver. A new semi-distributed BESS scheme is proposed and the strategy is analyzed as a way of improving the suppression of the fluctuations in the wind farm power output. The scheme is tested for similar and dissimilar wind power profiles, where the turbines are geographically located closer and further from each other, respectively. These two power profiles are assessed under a variety of hard system constraints for both the proposed and conventional BESS configurations. Based on the simulation results validated with real-world wind farm data, it has been observed that the proposed semi-distributed BESS scheme results in the improved performance as compared with conventional configurations such as aggregated and distributed storage.  相似文献   

5.
In this paper, the hybrid concept to use renewable electricity to produce hydrogen with an electrolyser in combination with a battery is introduced and analysed. This hybrid system opens the possibility to optimise operation and to increase operation times of the system and thus to improve the techno-economic performance. To analyse the performance, a model has been developed, which designs and operates a single or hybrid power-to-gas system in a cost optimal manner. The underlying method is a mixed integer linear programming (MILP) approach, which minimises total system costs. The cost optimisation modelling is performed by a case study for a hybrid electrolyser/battery system directly coupled with a large PV power plant without grid connection. The results show, that batteries can support electrolyser operation in a reasonable way. This is however associated with higher hydrogen production costs and not competitive compared to the installation of additional electrolyser capacity or curtailment of electricity.  相似文献   

6.
大规模储能技术是实现可再生能源并网和普及应用的核心技术,也是发展能源互联网、分布式发电、电力辅助调频、离网供电、安全备用电源等领域的关键使能技术。液流电池是一类新兴的大规模储能技术,经过近几年的快速发展,已经具备规模应用的竞争力。液流电池具备安全性好、单个循环储能时间长、功率/容量独立设计、储能容量大和寿命长等特点。目前液流电池成本偏高,高成本制约了液流电池储能技术大规模商业化应用。针对这一行业"痛点"问题,本文通过创新型的电池堆结构、新型关键材料和工艺研究,将液流电池堆功率密度提高2~4倍,实现电池堆的小型化,有效提高关键部件利用率,有望将液流电池系统成本降低20%~30%。  相似文献   

7.
S. Avril  G. Arnaud  A. Florentin  M. Vinard 《Energy》2010,35(12):5300-5308
Stand-alone photovoltaic (PV) systems comprise one of the promising electrification solutions to cover the demand of remote consumers, especially when it is coupled with a storage solution that would both increase the productivity of power plants and reduce the areas dedicated to energy production.  相似文献   

8.
The energy storage problem is an essential issue in renewable energy-based power systems. A comprehensive study is performed to evaluate off-grid hybrid renewable energy systems with a battery bank or a hydrogen system employed as the energy storage option. Dynamic modelling is proposed to see daily and seasonally changes in the system. The economic feasibility of the system and its environmental impacts are investigated in three locations. A multi-objective optimization method based on the Taguchi approach is employed to minimize both levelized cost of energy and the CO2 emissions. Various weight factors were assigned to understand the response of different optimization targets. The results highlight that the hybridization of energy resources allows the annual emissions to be cut by 68–78% for battery storage, 84–90% for hydrogen storage, compared to a diesel-only system. Despite having higher costs, the systems with hydrogen storage can store energy in the long term; therefore, they have lower CO2 emissions.  相似文献   

9.
Environmentally friendly and pollution-free hydrogen cell, battery and supercapacitor hybrid power system has taken the attention of scientists in recent years. Several notable advancements in energy storage mechanisms with hybrid power systems have been made during the last decade, influencing innovation, research, and the possible direction for improving energy storage technologies. This paper represents a quantitative analysis of all knowledge carriers with mathematical and statistical methods of hydrogen energy storage to establish a hybrid power system. For selecting the top cited papers in this topic, related articles on energy storage mechanisms for hybrid power systems were searched in the Scopus database under specified predetermined parameters. The selection technique of the most cited paper was based on filtered keywords in the hybrid hydrogen energy storage-based hybrid power system and related research during 2008–2021. About 48% of all articles have been published between 2016 and 2019; 21% will have originated from China; and 29% of the papers have used batteries as a form of energy storage in the application of electric vehicles. Most of the articles contain experimental work (25.11%) followed by simulation analysis (25%) and systematic and nonsystematic review (18.75%). Related publications with the most citations were published in 35 different impactful journals from different publishers and nations. This research found that integrating hydrogen energy storage with battery and supercapacitor to establish a hybrid power system has provided valuable insights into the field's progress and development. Moreover, it is a thriving and expanding subject of study. Bibliometric analysis was used to identify the most significant research publications on the subject of hybrid energy storage, mapping the multidisciplinary character, illustrating nature and trends, and outlining areas for further research. The process of collecting, selecting, and analyzing the most cited articles is expected to contribute to a methodical foundation for future developments of hydrogen energy storage systems and provide viable research paths toward attaining a hybrid power system.  相似文献   

10.
Within the current outlook for sustainable electric energy supply with concomitant reduction in emission of greenhouse gases, accelerated attention is focusing on the long-term development of hydrogen fuel cell and all-electric battery vehicles to provide alternative fuels to replace petroleum-derived fuels for automotive national fleets. The potential varies significantly between large industrially developed nations and smaller industrially developing nations. The requirement for additional electric energy supply from low-specific energy renewable resources and high-specific energy nuclear resources depends strongly on individual national economic, environmental, and political factors. Analysis of the additional electric energy supply required for the two potential large-scale technologies for fueling future national transportation sectors is compared for a large Organization for Economic Co-operation and Development (OECD) nation (USA) with a small OECD nation (New Zealand), normalized on a per-capita basis.  相似文献   

11.
Renewable energy resources play a very important rule these days to assist the conventional energy systems for doing its function in the UAE due to high greenhouse gas (GHG) emissions and energy demand. In this paper, the analysis and performance of integrated standalone hybrid solar PV, fuel cell and diesel generator power system with battery energy storage system (BESS) or supercapacitor energy storage system (SCESS) in Khorfakkan city, Sharjah were presented. HOMER Pro software was used to model and simulate the hybrid energy system (HES) based on the daily energy consumption for Khorfakkan city. The simulation results show that using SCESS as an energy storage system will help the performance of HES based on the Levelized cost of energy (LCOE) and greenhouse gas (GHG) emissions. The HES with SCESS has renewable fraction (68.1%) and 0.346 $/kWh LCOE. The HES meets the annual AC primary load of the city (13.6 GWh) with negligible electricity excess and with an unmet electrical load of 1.38%. The reduction in GHG emissions for HES with SCESS was 83.2%, equivalent to saving 814,428 gallons of diesel.  相似文献   

12.
The high cost of lithium ion batteries is a major impediment to the increased market share of plug-in hybrid electric vehicles (PHEVs) and full electric vehicles (EVs). The reuse of PHEV/EV propulsion batteries in second use applications following the end of their automotive service life may have the potential to offset the high initial cost of these batteries today. Accurately assessing the value of such a strategy is exceedingly complex and entails many uncertainties. This paper takes a first step toward such an assessment by estimating the impact of battery second use on the initial cost of PHEV/EV batteries to automotive consumers and exploring the potential for grid-based energy storage applications to serve as a market for used PHEV/EV batteries. It is found that although battery second use is not expected to significantly affect today's PHEV/EV prices, it has the potential to become a common component of future automotive battery life cycles and potentially to transform markets in need of cost-effective energy storage. Based on these findings, the authors advise further investigation focused on forecasting long-term battery degradation and analyzing second-use applications in more detail.  相似文献   

13.
This paper deals with an optimal battery energy storage capacity for the smart grid operation. Distributed renewable generator and conventional thermal generator are considered as the power generation sources for the smart grid. Usually, a battery energy storage system (BESS) is used to satisfy the transmission constraints but installation cost of battery energy storage is very high. Sometimes, it is not possible to install a large capacity of the BESS. On the other hand, the competition of the electricity market has been increased due to the deregulation and liberalization of the power market. Therefore, the power companies are required to reduce the generation cost in order to maximize the profit. In this paper, a thermal units commitment program considers the demand response system to satisfy the transmission constraints. The BESS capacity can be reduced by the demand response system. The electric vehicle (EV) and heat pump (HP) in the smart house are considered as the controllable loads of the demand side. The effectiveness of the proposed method is validated by extensive simulation results which ensure the reduction of BESS capacity and power generation cost, and satisfy the transmission constraints.  相似文献   

14.
The current energy transition imposes a rapid implementation of energy storage systems with high energy density and eminent regeneration and cycling efficiency. Metal hydrides are potential candidates for generalized energy storage, when coupled with fuel cell units and/or batteries. An overview of ongoing research is reported and discussed in this review work on the light of application as hydrogen and heat storage matrices, as well as thin films for hydrogen optical sensors. These include a selection of single-metal hydrides, Ti–V(Fe) based intermetallics, multi-principal element alloys (high-entropy alloys), and a series of novel synthetically accessible metal borohydrides. Metal hydride materials can be as well of important usefulness for MH-based electrodes with high capacity (e.g. MgH2 ~ 2000 mA h g−1) and solid-state electrolytes displaying high ionic conductivity suitable, respectively, for Li-ion and Li/Mg battery technologies. To boost further research and development directions some characterization techniques dedicated to the study of M-H interactions, their equilibrium reactions, and additional quantification of hydrogen concentration in thin film and bulk hydrides are briefly discussed.  相似文献   

15.
Hydrogen energy storage systems (HydESS) and their integration with renewable energy sources into the grid have the greatest potential for energy production and storage while controlling grid demand to enhance energy sustainability. This paper presents a bibliometric analysis based on a comprehensive review of the highly cited articles on HydESS to provide a detailed insight into future directions and applications. The study was carried out by using the Scopus database search engine to look for filtered keywords in the HydESS and related research. It can be demonstrated that the HydESS literature expanded rapidly from 2016 to 2021 compared to 2011 to 2015. It is found that 89.17% of published articles explained control and test systems-based methods, whereas 10.83% of publications discuss review assessments. Our analysis of highly cited articles on HydESS highlights several aspects, such as methods and systems, issues, difficulties, and challenges to establishing current constraints and research gaps. This evaluation can enhance operational performance, environmental friendliness, energy savings, uninterrupted power supply service, cost benefits, on-site generation, and adaptability. It would be beneficial for technology development and the growth of the hydESS industry. This study may act as a guideline not only for academics in determining the line of research and generating additional discoveries, but also for the government in formulating financial strategies.  相似文献   

16.
Battery energy storage is a flexible and responsive form of storing electrical energy from Renewable generation. The need for energy storage mainly stems from the intermittent nature of solar and wind energy sources. System integrators are investigating ways to design plants that can provide more stable output power without compromising the financial performance that is vital for investors. Network operators on the other side set stringent requirements for the commissioning of new generation, including preferential terms for energy providers with a well-defined generation profile. The aim of this work is to highlight the market and technology drivers that impact the feasibility of battery energy storage in a Utility-scale solar PV project. A simulation tool combines a battery cycling and lifetime model with a solar generation profile and electricity market prices. The business cases of the present market conditions and a projected future scenario are analyzed.  相似文献   

17.
储能技术是突破可再生能源大规模开发利用瓶颈的关键技术,是智能电网的必要组成部分.在储能市场商业化雏形阶段,系统性的比较分析各类储能技术的性能特点,为未来市场发展提供筛选技术路线的框架基础至关重要.本文阐述了储能技术在可再生能源发电和智能电网中的作用,对物理储能(抽水蓄能,压缩空气储能,飞轮储能),电化学储能(二次电池,液流电池),其它化学储能(氢能,合成天然气)等储能技术进行了系统的比较与分析,最后提出储能技术的发展趋势.  相似文献   

18.
Today, the world is moving towards sustainable and renewable energy resources. In order to ensure sustainable and steady power supply, thermal energy storage (TES) is playing a vital role. Most parts of the literature focus on different techniques and new energy storage materials. There is a scarcity of data on technological inventions in the form of patents to provide information to new researchers and investors before starting their new projects on TES. So this research work seeks to address this gap by concentrating on the patent analysis of various technologies with respect to their global publication trend in TES research field. The proposed research work also elaborates the technological evolution in domestic and industrial applications of TES. This analysis is carried out using patent database search tools IncoPat and Espacenet. Patent documents are retrieved between the time span ranging from 2006 to 2018. According to research findings, the number of published patents related to different TES technologies increase every year. China, the United States, Japan, and South Korea are categorized as main depositor countries. Moreover, technology-based applications and their inventing organizations from different countries are also ranked in current research work.  相似文献   

19.
液流电池技术利用流动的电解液作为电化学储能介质,适合于进行大容量电能与化学能的转化与储存。液流电池通常具有寿命长、效率高等技术特征,在平滑风能、太阳能等可再生能源发电出力以及微型电网、智能电网建设等方面有着广阔的应用前景。本文论述了液流电池的研究与开发现状,概述了目前逐渐具备工程实施能力的全钒液流电池体系,分析了液流电池新体系的研究开发状况,指明了它们各自需要进行技术突破的重要问题,最后展望了金属/ 空气液流电池的技术优势与未来发展前景。  相似文献   

20.
随着国内以风电,太阳能为主的可再生能源快速增长,可再生能源消纳能力不足和并网困难等问题愈发突出,大规模储能系统被证实是解决该问题的有效方法.本文回顾了现有成熟储能系统的不足与限制,分析氢储能的优势特点,构建了电能链和氢产业链融合的氢储能系统,为可再生能源的进一步发展提供良策.随后对氢储能系统三个环节(制氢,储运氢,氢发电)关键技术进行了梳理,对电解槽技术,燃料电池技术和储氢材料中的关键性能进行了比较和评估.在氢储能领域,部分发达国家已经初步形成了从基础研究,应用研究到示范演示的全方位格局,本文对德国和法国的重点示范工程进行了调研,为我国未来发展氢储能的提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号