共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了VMD自适应寻优K值,其将最佳K值确定为稀疏指标由上升至下降的转折点;在计算VMD各个分量的稀疏度时,考虑到不同分量间的能量差异加入了能量权值因子,最后将稀疏指标确定为分解后各分量边际谱稀疏度的平均值。仿真信号与实际信号分解试验验证表明:相较于其他两种VMD的K值确定方法,该方法确定的K值结果更为准确,实现的优化VMD自适应性更强,较其他信号分解法如经验模态分解(empirical mode decomposition,EMD)有更好的分解效果,为源信号数目未知的复合信号VMD提供了新思路;此外,噪声的鲁棒性试验证明所提基于稀疏指标的优化VMD法还具有一定的抗噪能力,较稳健,可开发应用于实际工程。 相似文献
2.
以复杂航天器姿态控制系统为研究对象,在考虑航天器配置挠性帆板和充液贮箱的复杂情况下,对姿态控制系统闭环中由于帆板挠性和液体晃动产生的干扰力矩进行特性分析。基于虚功率法建立复杂航天器整体动力学方程,同时建立帆板振动和液体晃动动力学方程;采用相平面控制律完成复杂航天器姿态闭环控制仿真,对帆板挠性和液体晃动产生的干扰力矩进行数据采集;基于变分模态分解法对扰动力矩时域数据进行时频分析得到其扰动特性,为后续扰动抑制算法的设计提供理论基础。通过数学仿真结果表明该方法的适用性和准确性。 相似文献
3.
针对滚动轴承故障信号具有非线性、非平稳、噪声强的特点,提出了一种基于参数自寻优变分模态分解(variational modal decomposition,VMD)的信号降噪方法。以模态复合熵作为适应度函数,采用改进粒子群算法进行VMD参数自适应寻优,确定变分模态分解最优模态数K和二次惩罚因子α;基于最优K和α,对原始信号进行VMD分解,得到K个本征模态函数(intrinsic mode function,IMF)分量;利用相关系数筛选法,进行模态分量的有效模态和含噪模态识别,利用小波阈值去噪方法对含噪模态进行去噪处理;将有效模态与去噪后的模态进行重构,实现信号降噪。分别用滚动轴承故障仿真信号和试验信号进行验证,并与EMD降噪方法进行比较,结果表明该方法可有效提高故障信号的信噪比,降噪效果明显,有利于滚动轴承故障特征的提取。 相似文献
4.
针对同步提取变换(SET)不能分离频率成分间隔相近的多分量信号的问题,提出了一种结合变分模态分解(VMD)和同步提取变换识别时变结构瞬时频率的方法。首先,通过傅里叶变换确定预设模态数量,利用VMD对多分量信号进行分解得到多个模态分量;然后,采用SET对每个模态分量进行时频分析获取瞬时频率;最后,将各模态分量的时频谱图叠加得到完整的多分量信号时频谱图。针对多分量时变信号和两自由度时变结构自由振动响应信号的瞬时频率识别结果,验证了基于VMD和SET结合方法识别时变结构瞬时频率的有效性和正确性。结果表明,该方法具有较好的噪声鲁棒性和能量聚集性,克服了SET处理频率成分间隔相近的多分量信号的不足,能有效识别具有近距离频率成分的时变结构瞬时频率。索力线性和正弦变化时拉索瞬时频率识别的试验验证了该方法的适用性。 相似文献
5.
针对薄板结构中损伤兰姆波信号提取及表征困难两大问题,提出了一种融合经验模态分解(empirical mode decomposition, EMD)与模糊熵(fuzzy entropy, FEn)的薄板结构损伤识别新方法。该方法首先基于EMD从复杂的兰姆波信号中提取并分离与结构损伤相关的信号;再利用提取出的损伤信号的归一化模糊熵作为损伤指数对结构损伤大小进行定量表征,从而实现薄板结构的损伤识别。设计的三组碳纤维增强复合材料板(carbon fiber reinforced polymer, CFRP)划痕损伤识别试验验证了该方法的可行性,试验结果表明:归一化后的模糊熵与CFRP板划痕损伤大小呈现较好的线性增加的关系,利用该线性关系可以对CFRP板划痕大小进行识别;与基于奇异谱-模糊熵的结构损伤识别方法相比,该研究所提方法识别效果更佳。 相似文献
6.
针对以往信号处理方法存在的缺陷,提出了一种新的非平稳信号分析方法—稀疏带宽模态分解(Sparse bandwidth mode decomposition,SBMD).该方法将信号分解转化为约束变分问题,自适应地将信号分解为若干个IMF分量之和。另外,在变转速工况下,滚动轴承故障振动信号中含丰富的状态信息,将SBMD、阶次追踪分析和包络谱相结合应用于变转速工况条件下的滚动轴承故障诊断问题。实验分析结果表明,采用SBMD阶次包络谱方法可以及时有效的诊断变转速工况下的滚动轴承故障诊断问题。 相似文献
7.
为了精确分析离心泵叶轮内复杂的非稳态流动特性,基于泵内流动的大涡模拟(large eddy simulation, LES)数值计算结果,在设计工况及小流量工况下对叶轮内非定常相对速度场进行动态模态分解(dynamic modal decomposition, DMD),得到能够反映叶轮内复杂流动特征的前4阶主要模态及其相应的频率信息。分析结果表明:DMD方法能够有效识别叶轮内复杂流动的脉动频率,提取出相应的流场结构,将叶轮内复杂的流场特征分解为基本模态特征、反映叶轮流道内流动分离及不稳定涡结构的高阶动态模态特征;基本模态能够反映由流道几何形状引起的叶轮出口高速射流区与低速尾迹区及叶片背面流动分离区域。设计工况速度场2阶~4阶动态模态流场反映出叶轮内流动受蜗壳干扰在叶片背面产生的流动分离及不稳定涡结构脱落特征;小流量工况速度场动态模态表征了由于叶轮旋转及蜗壳干扰在流道内发生流动分离、失速等流场特征。通过DMD方法能够有效地对叶轮内重要流场结构进行低维近似,清楚地分析离心泵叶轮内复杂流场的非定常特性。 相似文献
8.
程军圣李梦君欧龙辉杨宇 《振动与冲击》2018,(15):27-32
针对变分模态分解(VMD)中难以确定分解分量个数k和惩罚参数α的问题。提出一种改进的变分模态分解方法—基于萤火虫算法及主模态分析法的变分模态分解(FA-PMA-VMD)方法。该方法用主模态分析(PMA)对VMD分解的带限内禀模态函数(BIMF)分量进行排序;用萤火虫算法对变分模态分解的最佳影响参数[k,α]组合进行搜索,以新提出的正交低峰值作为萤火虫算法的优化目标,得到的最佳的惩罚参数α和分量个数k组合;根据预先设定的故障特征参数自适应地将信号分解为k个BIMF分量。通过对仿真信号和齿轮齿根裂纹实际故障信号进行分析,分析结果表明FA-PMA-VMD具有良好的分解效果。 相似文献
9.
程军圣李梦君欧龙辉杨宇 《振动与冲击》2018,(15):27-32
针对变分模态分解(VMD)中难以确定分解分量个数k和惩罚参数α的问题。提出一种改进的变分模态分解方法—基于萤火虫算法及主模态分析法的变分模态分解(FA-PMA-VMD)方法。该方法用主模态分析(PMA)对VMD分解的带限内禀模态函数(BIMF)分量进行排序;用萤火虫算法对变分模态分解的最佳影响参数[k,α]组合进行搜索,以新提出的正交低峰值作为萤火虫算法的优化目标,得到的最佳的惩罚参数α和分量个数k组合;根据预先设定的故障特征参数自适应地将信号分解为k个BIMF分量。通过对仿真信号和齿轮齿根裂纹实际故障信号进行分析,分析结果表明FA-PMA-VMD具有良好的分解效果。 相似文献
10.
针对变分模态分解(variational mode decomposition,VMD)中模态数K和惩罚因子α无法自适应确定的问题,提出了基于快速变分模态分解(fast VMD,FVMD)的滚动轴承故障特征提取方法。首先,利用频谱趋势分割方法对滚动轴承振动信号进行分析,确定频谱趋势分割边界,进而自适应确定VMD的分解模态数K和惩罚因子α、模态初始中心频率ω;其次,根据参数K、α、ω,完成原始振动信号的自适应分解,并基于有效权重峭度准则提取有效本征模态函数(intrinsic mode function,IMF)分量;最后,利用希尔伯特包络解调计算有效IMF分量重构信号的包络频谱图,完成滚动轴承故障特征的提取。使用仿真信号、美国凯斯西储大学(Case Western Reserve University,CWRU)和美国航空航天局(National Aeronautics and Space Administration,NASA)的滚动轴承数据完成所提方法与传统VMD方法的对比试验。结果表明,所提方法能够自适应确定VMD的分解模态数K和惩罚因子α,提高VMD的计算效率,同时有效提取到滚动轴承的故障特征频率,证明了所提方法的有效性和可行性。 相似文献
11.
12.
滚动轴承早期故障信号特征微弱且难以提取,为了从轴承振动信号中提取特征参数用于轴承故障诊断和识别,提出基于变分模态分解(Variational Mode Decomposition,VMD)和排列熵(Permutation Entropy,PE)的信号特征提取方法,并采用支持向量机(Support Vector Machine,SVM)进行故障识别。对轴承振动信号进行变分模态分解,得到不同尺度的本征模态函数;计算各本征模态函数的排列熵,组成多尺度的复杂性度量特征向量;将高维特征向量输入基于支持向量基建立的分类器进行故障识别分类。通过滚动轴承实验数据分析了算法中参数选取问题,将该方法应用于滚动轴承实验数据,并与集合经验模态分解和小波包分解进行对比,分析结果表明,基于变分模态分解和排列熵的诊断方法有更高的诊断准确率,能够有效实现滚动轴承的故障诊断。 相似文献
13.
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。 相似文献
14.
土木结构的损伤识别技术对提升结构可靠性与安全性具有重要意义,也是土木结构健康监测研究中的热点问题。现有的损伤识别方法往往需要识别模态参数,或者需要准确获取结构外部载荷信息,极大限制了相关方法在实际工程中的应用。为克服现有方法的局限性,该文将结构动态响应重构方法引入到损伤识别中,提出了基于应变模态响应重构的损伤识别方法。构建结构健康状态的有限元模型,以损伤结构测量的信号输入,通过基于经验模态分解的应变重构方法,可以获取使用无损伤模型的结构全局模态响应。以传感器采集的模态响应和重构模态响应的差异作为有限元模型修正的依据,通过应变模态比值构建的传递率的灵敏度矩阵进行迭代运算,求得损伤位置及损伤程度。该方法无需获取结构的外部激励信息,通过高效的时域应变重构,能够在少量测量信号下实现对结构损伤的精确识别。为验证该方法的准确性和高效性,开展了连续梁单一损伤和多损伤识别研究,探讨了测量噪声和模态阶次选取对识别结果的影响,结果表明,该方法能够准确、高效识别不同程度的损伤,对测量噪声具有较强的鲁棒性。 相似文献
15.
为在强背景噪声环境下有效提取滚动轴承微弱故障特征并准确诊断故障,提出奇异谱分析(singular spectrum analysis, SSA)、变分模态分解(variational mode decomposition, VMD)和最大相关峭度解卷积(maximum correlated kurtosis deconvolution, MCKD)结合的滚动轴承故障诊断方法。首先,利用SSA算法将故障信号分解,根据时域互相关准则对分解信号筛选重构;其次,利用鲸鱼优化算法(whale optimization algorithm, WOA)分别优化VMD的参数alpha,K以及MCKD的参数L和M,利用参数优化的VMD对重构信号进行分解,根据峭度指标从分解所得的本征模态函数(intrinsic mode function, IMF)中提取故障特征信号;再次,利用参数优化的MCKD算法增强故障特征;最后,通过频谱包络进行故障诊断。仿真和试验表明,所提方法能在强噪声干扰下有效提取并诊断轴承故障。 相似文献
16.
针对变分模态分解(Variational Mode Decomposition,VMD)的参数需事先人为确定的问题以及如何选取包含故障特征信息的本征模态分量(Intrinsic Mode Function,IMF)的问题,提出了基于信息熵的参数确定方法和基于信息熵的IMF选取方法。该方法首先对原始故障信号进行变分模态分解,通过信息熵最小值原则对其参数进行优化,获得既定的若干IMF分量;在优化参数时获得信息熵最小值所在的IMF,选取其为有效IMF分量进行包络解调分析,提取轴承故障特征频率。通过轴承仿真信号和实际数据分析,表明该方法能够提取滚动轴承早期故障信号的微弱特征,并实现故障的准确判别。 相似文献
17.
针对水电机组故障诊断问题,提出了一种基于集合经验模态分解(EEMD),曲线趋势编码(CC)和隐马尔科夫模型(HMM)的故障识别方法。该方法首先利用EEMD处理机组振动信号,得到一系列本征模态函数(IMF)然后计算各阶IMF的标准差(SDs)形成标准差曲线,并根据IMF标准差曲线的趋势进行编码构成特征向量。最后将特征向量作为学习样本输入HMM,通过训练得到各状态的HMM。当待测样本输入各状态HMM时,可通过对比各模型输出的对数似然概率值来判断样本所属状态。试验结果表明,该方法能有效提取机组故障特征,识别故障类型,与常规故障识别方法相比,具有较高的准确率。 相似文献
18.
针对爆破延期识别中采用经验模态分解(empirical mode decomposition, EMD)方法存在模态混叠现象,导致延期识别精度低的问题。提出了一种完全正交经验模态分解(principal empirical mode decomposition, PEMD)方法,首先对原始信号进行EMD初步分解,得到多个具有模态混叠现象的本征模函数(intrinsic mode function, IMF)分量,其次对IMF分量进行主成分分析(principal component analysis, PCA),将混叠的IMF分量完全正交化,之后选择幅值较大且波形衰减明显的主分量,使用Hilbert变换提取包络线,最后对包络线峰值点进行识别。通过相似物理模拟试验证明,PEMD与传统方法EMD相比,有效地抑制振动信号EMD分解时出现模态混叠现象,延期识别误差降低至0,并通过控制高程和延期时间对PEMD方法的稳定性进行了检验;同时以德兴露天边坡延期爆破试验为例,PEMD能够更好地对爆破振动波峰值点进行精确识别,识别率稳定在90%以上,对后续爆破工程中爆破参数设计优化和盲炮的识别具有重要意义... 相似文献
19.
带通滤波器参数(中心频率和带宽)选取是共振解调的关键,针对快速峭度图找寻的中心频率偏大、带宽过宽的问题,提出Infogram(信息图)用于确定滤波器参数;并利用变分模态分解(Variational Mode Decomoposition,VMD)预先对信号进行重构,以减少噪声对信息图的影响,增强其应用效果。对轴承故障振动信号进行变分模态分解得到有限个模态分量,根据模态选取准则确定包含故障信息较多的模态分量进行信号重构,再应用信息图确定最佳共振频带的中心频率和带宽,并对重构信号进行带通滤波和包络谱分析,识别轴承故障特征频率。仿真分析和轴承外圈模拟故障试验验证了该方法的有效性。 相似文献
20.
传统经验模态分解(empirical mode decomposition, EMD)方法在处理桥梁挠度信号时存在模态混叠、分解误差累积等问题,致使分解结果尚不理想。为此,提出了一种结合变分模态分解(variational mode decomposition, VMD)和K-L散度(Kullback-Leibler divergence, KLD)的桥梁挠度监测数据温度效应分离方法。利用VMD分解桥梁挠度信号,获得若干个本征模态函数(intrinsic mode function, IMF);借助核密度估计求得各IMF分量的概率密度函数分布,进而得到各分量KLD值,剔除虚假IMF分量,选定最佳分量;运用Pearson相关系数对最佳分量进行效果评价;通过数值仿真算例与实桥监测数据,验证了该方法的有效性。结果表明:该方法融合了VMD自适应、抗噪能力强和KLD快速选取最优信号的优势,克服了传统EMD模态混叠等缺陷,减少了虚假分量的干扰,将两者结合使得分解及筛选特征信号分量高效可靠,温度效应分离效果良好;仿真信号经VMD-KLD分析得到日、年温差效应及长期挠度相关系数分别为0.994 6、0.983 7和0.970 4,实测信号得到的日、年温差效应相关系数分别为0.908 1、0.936 4;同EMD-KLD相比,VMD-KLD分离出的各挠度成分相关系数更接近于1,仿真信号分析中日、年温差效应及长期挠度分别提升了4.43%、10.84%和8.81%,实测信号分析中日、年温差效应分别提升了12.35%、5.57%。该方法可为桥梁挠度监测数据温度效应在线分离提供一种新的思路。 相似文献