共查询到17条相似文献,搜索用时 98 毫秒
1.
癫痫作为一种脑神经系统疾病,因其反复性强和治愈性低的特点,成为了 目前医学界的难题.癫痫的患病率在世界上仅次于急性脑卒中的慢性疾病,达0.4%-1.4%.针对疾病发作的实时预测困难的问题,提出一种基于长短期记忆网络(LSTM)改进的癫痫发作预测算法研究.对经过预处理的电脑信号采用小波变换提取信号中的不同能量特征作为LSTM的输入参数,将电子搜索算法(ESA)和随时间反向传播算法(BPTT)相结合更快更准确地调整网络参数,以实现癫痫病发作的短时预测.与现有的网络预测分类模型LSTM、SVM进行对比试验,本文算法较传统分类算法提高了分类精度,达93.7%. 相似文献
2.
时间序列流量的预测问题是近年来机器学习的一个热点问题,通过改变长短期记忆网络(LSTM)层数、网络层神经元的个数、网络层之间的连接方式,特殊网络层的应用等网络结构以及优化器和损失函数的选择可以极大地提高预测的精度.本文提出多层LSTM算法,该算法是在传统LSTM算法上进行改进的单一模型,模型设计的复杂度低,可以提高机器学习的效率.模型采用一个输入层、5个隐藏层、1个输出层,同时包含1个全连接层和1个Dropout层,Dropout层的作用是防止机器学习过拟合.选择adam为模型优化器、mlse为模型损失函数、relu作为模型的激活函数.实验结果表明,与传统模型相比,该模型具有较好的泛化能力. 相似文献
3.
为进一步提升大坝变形的预测精度,充分反映外部环境变量对大坝变形影响的滞后性,考虑影响大坝变形的变量时间滞后效应,利用长短期记忆(long short-term memory,LSTM)网络算法,提出一种考虑变量滞后性的改进LSTM的大坝变形预测模型。将输入数据分为通过LSTM存储块的延迟变量和不通过存储块的无延迟变量,使模型在物理解释上更合理;为提高预测模型的非线性表达能力,增加第二个隐藏层,使时间效应量等无延迟变量在最后一个时间步可直接使用,不需进行复杂的转换形成原始输入时所需的子序列;结合具体案例计算验证改进模型的可靠度和精度。结果表明:改进LSTM模型的平均绝对误差(MAE)、均方误差(MSE)较LSTM模型分别降低了11.94%,25.60%,具有更高的预测精度;改进模型的预测残差正负分布范围较LSTM模型小,预测值整体在实测值附近变化。改进LSTM模型的预测结果优于LSTM模型,能更合理地对大坝变形进行预测。 相似文献
4.
针对标准长短期记忆(long short-term memory, LSTM)神经网络用于时间序列预测具有耗时长、复杂度高等问题,提出简化型LSTM神经网络并应用于时间序列预测.首先,通过耦合输入门与遗忘门实现对标准LSTM神经网络的结构简化;其次,从门结构控制方程中消除输入信号与偏差实现进一步精简;然后,采用梯度下降算法更新简化型LSTM神经网络的参数;最后,通过2个时间序列基准数据集及污水处理过程出水生化需氧量(biochemical oxygen demand, BOD)质量浓度预测进行实验验证.结果表明:在不显著降低预测精度的情况下,所设计的模型能够缩短训练时间,减少LSTM神经网络的计算复杂度,实现时间序列的预测. 相似文献
5.
基于新维灰色马尔科夫模型的股价预测算法 总被引:24,自引:0,他引:24
灰色预测适合于时间短、数据量少、波动不大的系统对象,但是对于系统对象的中长期预测,采用任何形式的GM(1,1)模型,预测结果往往会偏高或偏低,而马尔柯夫链理论适用于预测随机波动大的动态过程。通过结合灰色预测和马尔柯夫链理论的特点,并利用新信息优先的思想,提出了一种新维无偏灰色马尔柯夫预测模型,用无偏GM(1,1)模型拟合系统的发展变化趋势,并以此为基础进行了马尔柯夫预测,在每一步预测中,不断推陈出新,更新原始数据。实验结果表明,与一般的灰色马尔柯夫预测模型相比,预测准确度尤其是中长期预测准度得到了较大提高。 相似文献
6.
针对目前的剩余寿命预测(RUL)方法存在模型适应性差及预测不准确等问题,提出多尺度深度神经网络的锂电池健康退化预测模型. 通过经验模态分解(EEMD)方法和相关性分析(CA),将采集到的锂电池能量数据分解为主趋势数据和波动数据;采用深度置信网络(DBN)和长短期记忆网络(LSTM),分别对主趋势与波动数据进行建模;将DBN与LSTM预测结果进行有效集成,得到锂电池的健康预测结果. 实验结果表明,利用该方法能够有效地对锂电池的健康趋势进行拟合,得到准确的RUL预测结果,性能优于其他典型的预测方法. 相似文献
7.
针对股票预测模型存在时效性和预测功能单一化的问题,本文在长短期记忆网络(LSTM)的基础上,提出了融合自注意力机制(SA)和时间卷积网络(TCN)的双向长短期记忆(BiLSTM)神经网络(BiLSTM-SA-TCN)股票预测模型.BiLSTM-SA-TCN模型中的学习单元和预测单元可以有效学习重要的股票数据,同时能够抓取长时间的依赖信息,输出次日股票收盘价预测值.实验结果表明,BiLSTM-SA-TCN模型在多个数据集上的预测结果更加稳定,模型泛化能力较高,在对比实验中,BiLSTM-SA-TCN模型在大部分数据集上均方根误差最小,平均绝对值误差最小,拟合度R2最优. 相似文献
8.
9.
夏学文 《河南机电高等专科学校学报》2000,8(2):50-52
中对我国国民生产总值的数学模型用灰色系统理论进行了研究,建立了这一时间序列的灰色模型,通过检验表明所建模型是高精度的。此外,对总值构成进行了灰色关联分析,得到了一些好的结果。 相似文献
10.
在楼宇短期负荷预测中,针对单一预测模型难以充分学习负荷时间序列中的特性问题,提出了一种基于自回归差分移动平均-长短期记忆神经网络(ARIMA-LSTM)组合模型的楼宇负荷预测方法。首先,根据灰色关联度选取相似日时间序列数据为训练样本;然后,利用ARIMA模型预测负荷,并将原始数据和ARIM A预测数据之间的误差视为非线性分量;最后,通过LSTM神经网络对误差序列进行校正,得到楼宇短期负荷的最终预测值。通过对上海市某楼宇的预测效果分析,并将其与ARIMA模型、LSTM模型和ARIMASVM组合模型进行对比,验证了所提方法能够有效控制预测误差,提高楼宇负荷预测精度。 相似文献
11.
基于灰色改进模型的电价预测 总被引:7,自引:0,他引:7
针对电力市场中的电价预测问题进行了研究。在阐述了灰色模型在电价预测方面的应用后,提出了一种改进灰色模型用于电价预测的方法。通过对原始数据序列的一系列处理和对微分方程求解条件的变化达到预测精度的提高。最后用算例验证了该方法的可行性。 相似文献
12.
为了提高以风电、光伏为代表的新能源的爬坡预测的准确性,提出基于主成分分析、时序分解与修正长短期记忆(LSTM)网络预测误差的爬坡预测模型. 为了充分考虑功率的时序特性,采用时序分解方法将功率分解为周期、趋势和余项,结合多个特征因素的主成分建立基于LSTM的趋势和余项预测模型,实现功率的时间特征与影响因素主成分的映射关系刻画. 在采用LSTM对趋势和余项进行初步预测的基础上,引入误差修正算法计算拟合预测模型的动态误差并构建新的非平稳时间序列,获得准度性更佳的趋势和余项预测值. 通过加法模型融合趋势、余项以及利用朴素法获得的周期,得到最终预测功率. 结合风电和光伏爬坡事件定义,运用所提模型分别进行风电和光伏爬坡预测. 实验结果表明,与其他预测方法相比,所提模型在功率直接预测和爬坡事件间接预测上均具有更优的精度,能够为电网调度提供更可靠的依据. 相似文献
13.
针对水质数据在时间和空间维度上的复杂依赖关系,提出基于图神经网络(GNN)的地表水水质预测模型. 该模型采用GNN建模地表水水质监测站点在空间上的复杂依赖关系,使用长短时记忆网络(LSTM)建模水质指标序列在时间上的复杂依赖关系,将编码结果输入到解码器中得到预测输出. 实验结果表明,与时间序列分析方法、通用回归方法和一般深度学习方法相比,该模型能够实现23.3%、26.6%和14.8%的性能提升. 相似文献
14.
针对答案选择过程中存在语句特征、语句间的相关语义信息提取不充分的问题,在长短时记忆网络(LSTM)的基础上,提出基于LSTM和衰减自注意力的答案选择模型(DALSTM). DALSTM使用LSTM和衰减自注意力编码层提取丰富的上下文语义信息,通过衰减矩阵缓解反复使用注意力机制出现的权重过集中于关键词的问题.使用注意力机制对问题与答案间的信息进行双向交互,融合问答对间的相似性特征,丰富问答对间的相关语义信息.在WiKiQA、TrecQA及InsuranceQA数据集上的模型评估结果表明,相较于其他基于BiLSTM的先进模型,DALSTM的整体性能表现更好,3个数据集的平均倒数排名(MRR)分别达到0.757、0.871、0.743. 相似文献
15.
针对输入负荷特征对分解结果的重要程度不同,以及长短时记忆网络(LSTM)在捕捉长时间用电信息的时间依赖性方面受限导致分解误差高等问题,提出一种基于多注意力机制集成的非侵入式负荷分解算法.首先,利用概率自注意力机制对一维空洞卷积提取到的负荷特征进行优化处理,实现重要负荷特征的遴选;其次,采用时间模式注意力机制对LSTM的隐状态赋予权重,从而增强网络对长时间用电信息之间的时间依赖性的学习能力;最后,利用公开数据集UKDALE和REDD对所提分解模型的有效性和创新性进行验证.实验结果表明,与其他多种现有分解算法相比,基于多注意力机制集成的分解算法不仅具备更好的负荷特征遴选能力,而且能更加精确地建立特征之间的时间依赖关系,有效降低了分解误差. 相似文献
16.
跳闸是输电和配电电力系统中普遍存在的故障.目前一般采用基于继电保护动作和电气元件动作的保护方法应对跳闸故障.然而,这些面向电气保护的方法在处理跳闸故障时存在滞后性.因此,提前预测跳闸故障对处理隐藏问题和电力恢复起着至关重要的作用.本文提出一种基于多源时序数据的电力系统跳闸故障预测方法,使用窥孔长短时记忆网络(LSTM)提取多源数据的时间特征,缓解了循环神经网络(RNN)在长时间序列上的梯度消失问题.模型在三层栅极上添加窥孔连接结构使得单个单元能够查看上一阶段的LSTM单元状态以此强化网络时序记忆能力;使用参数归一化等L2正则措施缓解故障预测中的过拟合问题对结果的影响;引入支持向量机分类器提高总体模型的泛化能力和鲁棒性.实验结果表明,与现有的数据挖掘方法相比,所提方法具有分类准确性高的优点.最后,对实际应用进行讨论,证明了所提方法在实际场景中的可行性. 相似文献
17.
为了准确分析云计算集群日常监控中KPI (Key Performance Indicator)数据的动态和变化趋势,并预测后续发展,达到提高云计算集群高可用性的目标,本文提出三分频的基于组合注意力模型的EWT-ARIMA-Auto-TPA (EAAT)云KPI数据预测方法.首先基于经验小波变换(Empirical Wavelet Transform,EWT)得到云KPI数据低中高频的内在模态变量(Intrinsic Mode Functions,IMFs)降低数据预测的复杂程度.其次,根据分解得到的低中高频IMFs信息特征,分别运用ARIMA、Autoformer、TPA-BiLSTM模型对每类IMFs进行预测.最后,将分类预测后结果经过逆变换IEWT加以合并得出预测结果.本文预测方法在谷歌和亚马逊的4个数据集上得到了验证,无论数据是否具有周期性或者稳定性,本文预测方法都有较好的结果,综合效果比对比模型有较大提升. 相似文献