首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了水平管内低质量流量超临界二氧化碳(S-CO2)异常传热行为,采用Fluent软件模拟了水平管内低质量流量条件下S-CO2传热过程,分析了加热和冷却条件的异常传热行为和热流密度对传热影响。结果表明:热边界条件为压力8 MPa、质量流率200 kg/(m2·s)、热值比q/G=0.2 kJ/kg时,S-CO2管内流动冷却过程中上、下壁面温度均沿程降低,在S-CO2主流温度达到拟临界温度时,距离入口551.0 mm处上壁面换热系数出现突变峰值,该处传热强化;S-CO2管内流动加热过程中上壁面温度均先沿程升高,而后下降至395 K后缓慢上升,下壁面温度短暂降温后缓慢升温,距离入口69.5 mm处上壁面传热系数出现谷值,该处传热恶化;热流密度的增大使加热条件下换热恶化程度加剧,但对冷却换热并无明显影响。由此可见,特征截面的热物性分布是导致出现不同换热行为的主要原因。最后,基于低质量流量条件、热物性及浮升力影响,构建了预测超临界强化传热关联式,为超临界流体换热设...  相似文献   

2.
对超临界二氧化碳(S-CO2)在螺旋管内的对流换热性能进行模拟和试验研究。探讨了热流密度q、质量流量G、节距P、管内径d、螺旋半径R等流动、结构特性对流动传热的影响,并对各结构特性灵敏度做了量化分析;搭建了闭式循环的S-CO2测试平台,对螺旋管内S-CO2对流换热性能进行了试验研究,并基于试验工况数据验证了数值模拟的准确性;对数据进行处理,拟合出了S-CO2的传热关联式。该研究为S-CO2螺旋管式换热器的热力设计方法奠定了基础,并在核电及光热发电领域具有一定的工程应用价值。  相似文献   

3.
高性能超临界二氧化碳(S-CO2)换热器是实现S-CO2布雷顿循环系统高效紧凑化的关键核心设备,S-CO2在光滑通道内换热系数较低,寻求高换热性能与低阻换热结构是发展高效紧凑式换热器的关键。采用五轴电火花成型技术制造出直肋管,通过实验方法研究了S-CO2在四头直肋管内传热规律,系统分析了流动参数对直肋管强化传热特性影响,定量评估了直肋管与光管换热能力的差异;采用数值模拟方法研究了直肋管结构参数对强化传热和阻力特性的影响规律,获得最优的直肋管结构。结果表明:增加压力和质量流速可以降低壁面温度,提高对流换热系数,直肋管的平均换热能力是圆形光管的1.96倍左右;相较于圆形光管,直肋管可以有效延迟传热恶化发生,且使传热恶化延迟能力提升0.3~1.8倍;当固定肋宽0.5 mm,肋高2.5 mm,直肋管的综合换热能力最好,综合换热因子为1.58;而固定肋高为0.5 mm,高宽比0.33,直肋管的综合换热能力最好,综合换热因子为1.22。  相似文献   

4.
针对某型超临界二氧化碳(S-CO2)轴流透平开展了冷却系统设计,通过抽取压缩机后管道中低温S-CO2对干气密封、转轴和壳体进行冷却,以保证干气密封工作温度低于200.0℃。采用耦合传热方法分析了该冷却系统的流动和传热特性,对比了不同冷却方案的干气密封、转轴与壳体等固体域的温度分布。结果表明:采用转轴冷却方案时转轴温度降幅达到220.3℃,干气密封最高温度为229.1℃;进一步引入温度更低流量更大的S-CO2对壳体进行冷却,能抑制透平进口处高温主流的加热作用,转轴温度降幅增加到244.1℃,干气密封最高温度下降到181.2℃,同时S-CO2轴流透平干气密封、壳体和转轴等被冷却部件温度梯度可控。该冷却系统为S-CO2轴流透平的安全可靠运行提供了解决方案。  相似文献   

5.
超临界二氧化碳(S-CO2)动力循环具有效率高、系统紧凑及灵活性高等优点,未来可取代或部分取代水蒸气朗肯循环,实现高效热功转换。本文从能量传递转换机理、关键部件研发以及系统设计等角度,总结了国内外研究进展。已有研究表明,目前已成功展示小型径流式透平S-CO2循环系统,但CO2泄漏等导致系统性能降低,大型轴流式透平系统可能不会出现小型系统类似问题。综述了我国在S-CO2循环方面的研究进展。围绕大型S-CO2燃煤发电系统能量传递转换机理及系统概念设计,提出了锅炉模块化设计,将锅炉压降降低到与水蒸气锅炉相当甚至更低的水平;提出了顶/底复合循环,彻底解决了锅炉烟气热量全温区吸收问题。建立了高温高压CO2传热实验系统,获得了宽广参数范围内的实验数据,引入超临界类沸腾概念并提出超临界沸腾数及K数,获得了高精度预测超临界传热恶化及传热系数的广义关联式,提出了控制壁温的S-CO2锅炉概念设计等。在此基础上,提出了需加强的研究方向,包括适合不同热源(核能、太阳能、化石能源)的S-CO2循环构建,回热器、压气机及透平等关键部件设计及制造技术,关键部件及全系统的控制运行技术,以及不同功率等级的S-CO2循环的示范系统等,为S-CO2发电的商业应用奠定理论和技术基础。  相似文献   

6.
本文首先介绍了超临界二氧化碳(S-CO2)布雷顿循环的特点,包括临界点的重要性、回热器“夹点”问题、冷却器冷却工质问题等。然后,针对钠冷快堆(SFR),总结了国内外应用于SFR耦合布雷顿循环系统中的印刷电路板换热器(PCHE)的相关研究,包括在Na/CO2换热器、回热器、冷却器中运行的重要工质——S-CO2的流动换热性能,以及影响PCHE自身性能的流道结构优化设计。结果表明,针对具体的SFR应用,目前仍无明确结论认为哪种流道结构更为优越,需要针对具体应用场景进行相应的数值分析或实验研究。  相似文献   

7.
铅冷快堆和超临界二氧化碳(S-CO2)布雷顿循环因其高的热效率、紧凑式设计被认为是 最具前景的发电系统之一。液态铅铋合金(Pb/Bi)和S-CO2在中间换热器耦合换热,然 而2种流体的湍流输运特性与耦合传热行为相较于常规流体差异巨大,常规湍流模型无法准确预测其耦合换热性能。为获得两者间耦合传热的准确预测模型、掌握耦合传热规律,首先针对管内液态Pb/Bi和S-CO2的湍流普朗特数(Prt)模型的适用性进行了比较分析,发现冷、热侧分别选择Tang、Cheng和Tak提出的Prt模型可获得准确结果;对两者的耦合换热模型进行了深入分析与校验,模拟结果与实验数据吻合良好;全面探讨了雷诺数、工质温度对2种特殊流体耦合传热能力的影响,发现套管式换热器热阻主要存在于S-CO2侧,提升S-CO2侧参数可以迅速提高传热性能,且当S-CO2工质温度处于拟临界区时换热器的换热能力将大幅增强。  相似文献   

8.
为改善水平管内超临界二氧化碳(supercritical carbon dioxide,S-CO2)湍流传热,该文对管壁引入简易的均匀砂粗糙,并基于水平超临界流动传热特征,创新性地提出上壁面(传热恶化)附近特定区域粗糙化方案。模拟计算中,采用k-ωSST湍流模型并对其关于粗糙管流传热预测进行了验证以展示其可靠性,而后对管径d=4.57mm水平管道内S-CO2的流动传热展开探究,并讨论局部粗糙化范围以及关键因素浮升力的影响。结果表明:管道上壁面特定区域粗糙化能显著降低上壁面温度,增强该区域S-CO2传热性能,继而有效改善周向传热均匀性。低热流密度时,管壁粗糙面积在湍动能整体水平较低的加热管流前半部分影响较为明显;随着热流密度的增加,浮升力效应增强,上壁面附近高温区域逐渐扩大,而不同工况条件下使粗糙范围集中于此高温区域能够获得兼顾水平S-CO2传热效率与附加流动阻力更优的综合性能。  相似文献   

9.
基本光学性质折射率是研究物质物理性质的重要参数。本文以超临界二氧化碳(S-CO2)为对象,整合各文献在不同温度、压力下对S-CO2折射率的测量数据,使用遗传算法(GA)优化后的BP神经网络建立了预测S-CO2折射率的模型,并基于S-CO2密度与波长、折射率内在联系的洛伦兹-洛伦兹关系式,对S-CO2的密度进行反演。结果表明:该模型预测 S-CO2折射率的最大相对误差仅为0.844%;反演的S-CO2密度值同REFPROP软件结果相比,平均误差不超过3.65%;在亚临界和超临界区,通过实验测量折射率来研究CO2物性是可行的;在近临界区,由于CO2物性变化剧烈,对折射率变化规律的测量及折射率与CO2物性的关系尚需进一步研究。  相似文献   

10.
超临界二氧化碳(S-CO2)循环发电技术因其自身的技术优势成为热力发电领域一项具有划时代意义的重大变革性前沿技术,由于十分苛刻的工作环境,S-CO2易造成设备材料腐蚀。为确保S-CO2系统安全有效地运行,首先介绍了S-CO2布雷顿循环系统工质运行参数范围以及系统关键设备候选材料,其次综述了目前有关金属材料在S-CO2环境中的腐蚀行为研究现状,然后详细阐述了S-CO2环境下的腐蚀机理,归纳了温度、压力、杂质、流速以及材料成分对S-CO2腐蚀过程的影响,同时介绍了S-CO2腐蚀防控技术的研究进展,最后进行了总结并指出了现有研究的不足及未来研究的主要方向,为我国S-CO2循环系统的安全运行提供科学依据。  相似文献   

11.
近年来,采用高温超临界二氧化碳(S-CO2)作为工质构建新型布雷顿循环,建立超高参数、超高效率、结构紧凑的发电动力系统,在燃煤火电、核电、太阳能热发电等领域具有良好的应用前景。金属管道和部件在高温S-CO2环境中的抗高温腐蚀性能是该新型动力系统建设的瓶颈问题之一。本文综述了候选材料铁素体/马氏体耐热钢、奥氏体不锈钢、高温镍基合金在高温S-CO2环境中的腐蚀研究现状,探究了S-CO2环境下的氧化-碳化耦合机理,给出了S-CO2环境腐蚀亟需解决的问题,提出了合理抑制碳化腐蚀的方法,指明了S-CO2腐蚀的研究发展方向和趋势。  相似文献   

12.
以超临界二氧化碳(S-CO2)布雷顿循环发电机组中主设备S-CO2锅炉作为研究目标,以5MW试验机组作为研究对象,开展S-CO2锅炉性能指标评价体系研究。S-CO2锅炉的核心性能指标为锅炉燃料效率、换热面吸热量占比、空气预热器性能、工质系统压降和锅炉NOx排放浓度等。燃料效率计算中,通过计算尾部烟气含氧量进行过量空气系数推算燃料消耗量和风量,并改进排烟热损失的计算方法。引入了换热面吸热量占总吸热量比值作为SCO2锅炉工质侧性能考核指标。建立了5 MW S-CO2燃气锅炉性能指标评价体系并集成程序且完成案例分析。实际工况与研究对象的设计参数(设计效率93.53%)基本相当,最终计算获得锅炉燃料效率未经修正为92.05%,锅炉燃料效率修正为93.79%。  相似文献   

13.
超临界二氧化碳(S-CO2)布雷顿循环发电技术被认为是最具前景的发电技术之一。在S-CO2发电系统启动/停机或者较低负荷的条件下,主压缩机送出的S-CO2在不能够充分回热的条件下直接进入S-CO2锅炉,会使S-CO2锅炉气冷壁内的大量S-CO2工作在拟临界温度点附近,致使S-CO2流动不稳定性成为S-CO2锅炉必须考虑的问题。本文以S-CO2锅炉气冷壁最为常见的布置结构(即垂直上升加热管)为研究背景,首先构建了S-CO2流动不稳定性的计算模型,随后进行了大量的数值计算,研究了典型工况下的S-CO2流动不稳定性特点,获取了主要边界参数对界限热流密度的影响规律。结果显示:随着入口压力或者质量流量的增大,界限热流密度显著提升,管内流动稳定性有明显提高;随着入口温度的提高,界限热流密度先降低再升高;对于不同的工况,存在1个临界入口温度,在该入口温度下,界限热流密度最低,管内流动稳定性最差。  相似文献   

14.
为提高现有超临界二氧化碳(S-CO2)动压型干气密封的气膜刚度和降低因密封进气管路上设置加热器而增加的额外功耗,提出一种基于静环背部环体加热的S-CO2动静压型干气密封新结构。基于共轭热传递模型,采用商用软件Fluent求解密封压力场和温度场,对比分析了S-CO2动压型、静压型和动静压型干气密封的稳态性能和流场分布,探讨了不同加热模式和热源温度下S-CO2动静压型干气密封的流动传热特性和功率消耗。结果表明:在给定参数下,相较于动压型干气密封,动静压型干气密封的气膜刚度增加到2倍以上,不过泄漏率也增加了35%;相较于直接气体加热模式,环体加热模式下的加热功耗降低44%,密封运行经济性更好。这为S-CO2发电系统压缩机端干气密封的结构设计和辅助系统改进提供了新的思路。  相似文献   

15.
针对超临界二氧化碳(S-CO2)燃煤锅炉冷却壁热边界条件的实际分布,采用SST k-ω低雷诺数湍流模型,数值模拟研究了半周加热轴向非均匀热流作用下S-CO2在垂直圆管内的传热特性,分析了不同热流分布、质量流速对换热性能以及圆管内壁温度分布的影响。研究结果表明:轴向非均匀热流分布对S-CO2传热具有显著影响,在平均热流相同的条件下,相较于均匀热流分布,轴向非均匀热流分布下总传热系数最大提高了约8%;轴向非均匀热流分布对传热恶化有抑制作用,有效降低了壁温峰值点;非均匀热流条件下,S-CO2传热主要受类气膜厚度、类气膜导热系数及近壁区定压比热容的影响较大。研究结果可为燃煤S-CO2锅炉设计提供理论指导。  相似文献   

16.
苏宏亮  黄莺  殷亚宁  王婷  郭馨  王禹朋 《热力发电》2020,49(10):151-156
超临界二氧化碳(S-CO2)布雷顿循环逐渐成为国内外研究的热点。相对于传统蒸汽朗肯循环的广泛应用,S-CO2锅炉的热力计算还缺乏相关研究。本文以某5 MW S-CO2实验锅炉布置方案为例,将锅炉管道、炉膛、高温受热面作为串联管路,将热力特性与壁温进行耦合计算建立数值分析模型。该计算模型气温、壁温计算结果能够同时满足工程计算要求,对S-CO2锅炉研究具有重要意义。  相似文献   

17.
超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环由于高效、紧凑等特性被广泛关注。然而,对于大型(1 000 MW等级)S-CO2燃煤电厂,较高的冷却壁入口温度以及较大的炉膛燃烧热流密度会导致冷却壁过热超温。对此,本文建立了锅侧燃烧/炉侧S-CO2传热耦合模型用于冷却壁的热安全分析。通过冷却壁一维周向平均温度计算,提出了引入烟气再循环降低冷却壁温度的方法,并进一步提出了冷却壁分区顺逆流的优化布置。此外,考察了冷却壁三维温度分布,并进一步引入了螺旋冷却壁降低炉膛周向热点温度。结果表明,本文提出的优化方法可以有效降低冷却壁温度并消除局部热点,对大容量S-CO2燃煤锅炉的工程设计具有指导意义。  相似文献   

18.
张洪飞  王轩  石凌峰  田华  舒歌群 《热力发电》2020,49(10):157-163
内燃机余热回收技术对节能减排具有重要意义,其中超临界二氧化碳(S-CO2)动力循环系统因成本低、环境友好等优点,受到越来越多的关注。烟气换热器作为S-CO2动力循环系统的关键部件,其换热性能直接影响循环整体效率。印刷电路板换热器具有换热效率高、结构紧凑的特点,但目前鲜有在内燃机余热回收上的应用。因此,本文开展印刷电路板烟气换热器的结构设计及优化工作。设计了3种S-CO2侧流道结构的烟气换热器,并通过数值模拟,对比了不同流道结构对换热器内部流动及换热性能的影响。结果表明,镂空流道烟气换热器的单位质量换热量与Kv值远高于直角流道换热器和圆角流道换热器,说明镂空流道印刷电路板换热器可以更好地满足小型化、紧凑化的要求。  相似文献   

19.
超临界二氧化碳(supercritical carbon dioxide,S-CO2)布雷顿循环发电技术具有多方面优势,未来应用潜力巨大。S-CO2叶轮机械一般选用泄漏量极低的干气密封,但是S-CO2的特殊物性对干气密封的密封性能的影响显著,针对S-CO2干气密封的性能研究多以理论仿真为主,少有试验研究支撑。针对不同运行工况下的S-CO2干气密封的稳态性能,该文搭建高速高压干气密封试验台,试验研究不同转速、进气压力、进气温度对SCO2干气密封的泄漏量和摩擦耗功的影响规律,并将泄漏量的理论计算结果与试验值进行对比。结果表明:S-CO2干气密封的泄漏量及摩擦耗功随转速、压力的升高及温度的降低而增大,转速与压力的影响较大,温度的影响较小。泄漏量计算值与试验值存在一定偏差,最大偏差在20%左右。结果可为理论计算模型及计算方法的修正提供参考,以进一步分析S-CO2干气密封的密封性能。  相似文献   

20.
朱萌  周敬  陈磊  李艾书  苏胜  江龙  汪一  胡松  向军 《热力发电》2020,49(10):136-143
超临界二氧化碳(S-CO2)布雷顿循环发电技术被认为是可以替代蒸汽朗肯循环发电的新型发电技术。本文利用热力计算方法对660 MW级S-CO2燃煤锅炉进行了概念设计,确定了各受热面工质参数、受热面面积和烟气温度等参数,确保锅炉能适应整个S-CO2循环系统。同时基于加权质量法解决了S-CO2锅炉各受热面成本难以准确评估的问题,获得了S-CO2锅炉的造价,并利用平准化度电成本(LCOE)分析了整个S-CO2机组的经济性。结果表明:S-CO2机组的LCOE为0.540元/(kW·h),比常规机组低11.3%,具有很强的经济潜力;S-CO2机组中锅炉、回热器、预冷器的造价较高;S-CO2锅炉中/低温对流受热面平均材料等级的提升是导致锅炉造价提高的主要原因。因此,仍需继续开展针对锅炉(尤其是中/低温对流受热面)、回热器和预冷器的优化研究,以降低投资成本。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号