首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
张洪飞  王轩  石凌峰  田华  舒歌群 《热力发电》2020,49(10):157-163
内燃机余热回收技术对节能减排具有重要意义,其中超临界二氧化碳(S-CO2)动力循环系统因成本低、环境友好等优点,受到越来越多的关注。烟气换热器作为S-CO2动力循环系统的关键部件,其换热性能直接影响循环整体效率。印刷电路板换热器具有换热效率高、结构紧凑的特点,但目前鲜有在内燃机余热回收上的应用。因此,本文开展印刷电路板烟气换热器的结构设计及优化工作。设计了3种S-CO2侧流道结构的烟气换热器,并通过数值模拟,对比了不同流道结构对换热器内部流动及换热性能的影响。结果表明,镂空流道烟气换热器的单位质量换热量与Kv值远高于直角流道换热器和圆角流道换热器,说明镂空流道印刷电路板换热器可以更好地满足小型化、紧凑化的要求。  相似文献   

2.
本文首先介绍了超临界二氧化碳(S-CO2)布雷顿循环的特点,包括临界点的重要性、回热器“夹点”问题、冷却器冷却工质问题等。然后,针对钠冷快堆(SFR),总结了国内外应用于SFR耦合布雷顿循环系统中的印刷电路板换热器(PCHE)的相关研究,包括在Na/CO2换热器、回热器、冷却器中运行的重要工质——S-CO2的流动换热性能,以及影响PCHE自身性能的流道结构优化设计。结果表明,针对具体的SFR应用,目前仍无明确结论认为哪种流道结构更为优越,需要针对具体应用场景进行相应的数值分析或实验研究。  相似文献   

3.
基本光学性质折射率是研究物质物理性质的重要参数。本文以超临界二氧化碳(S-CO2)为对象,整合各文献在不同温度、压力下对S-CO2折射率的测量数据,使用遗传算法(GA)优化后的BP神经网络建立了预测S-CO2折射率的模型,并基于S-CO2密度与波长、折射率内在联系的洛伦兹-洛伦兹关系式,对S-CO2的密度进行反演。结果表明:该模型预测 S-CO2折射率的最大相对误差仅为0.844%;反演的S-CO2密度值同REFPROP软件结果相比,平均误差不超过3.65%;在亚临界和超临界区,通过实验测量折射率来研究CO2物性是可行的;在近临界区,由于CO2物性变化剧烈,对折射率变化规律的测量及折射率与CO2物性的关系尚需进一步研究。  相似文献   

4.
印刷电路板式换热器(PCHE)具有耐高温高压和结构紧凑的特点,因此常被用于超临界二氧化碳(S-CO2)布雷顿循环中。本文采用分段设计方法对PCHE建立了数学模型,与实验结果对比显示,热负荷、冷负荷、冷流体进口温度、热端换热面积、热端流量的误差分别为2.700%、0.330%、0.634%、0.683%、2.219%,证明了数值模型的正确性。对不同水力直径、壁厚及热端进口温度下的PCHE换热性能及阻力特性进行了对比分析,结果表明:水力直径与总传热系数和压降成反比,冷端压降大于热端;壁厚与总传热系数成反比,但压降对壁厚变化不敏感;热端进口温度越高,总传热系数和压降越小。研究结果可为PCHE的几何设计和热力学性能的研究提供一定参考。  相似文献   

5.
超临界二氧化碳(S-CO2)动力循环具有效率高、系统紧凑及灵活性高等优点,未来可取代或部分取代水蒸气朗肯循环,实现高效热功转换。本文从能量传递转换机理、关键部件研发以及系统设计等角度,总结了国内外研究进展。已有研究表明,目前已成功展示小型径流式透平S-CO2循环系统,但CO2泄漏等导致系统性能降低,大型轴流式透平系统可能不会出现小型系统类似问题。综述了我国在S-CO2循环方面的研究进展。围绕大型S-CO2燃煤发电系统能量传递转换机理及系统概念设计,提出了锅炉模块化设计,将锅炉压降降低到与水蒸气锅炉相当甚至更低的水平;提出了顶/底复合循环,彻底解决了锅炉烟气热量全温区吸收问题。建立了高温高压CO2传热实验系统,获得了宽广参数范围内的实验数据,引入超临界类沸腾概念并提出超临界沸腾数及K数,获得了高精度预测超临界传热恶化及传热系数的广义关联式,提出了控制壁温的S-CO2锅炉概念设计等。在此基础上,提出了需加强的研究方向,包括适合不同热源(核能、太阳能、化石能源)的S-CO2循环构建,回热器、压气机及透平等关键部件设计及制造技术,关键部件及全系统的控制运行技术,以及不同功率等级的S-CO2循环的示范系统等,为S-CO2发电的商业应用奠定理论和技术基础。  相似文献   

6.
以超临界二氧化碳(S-CO2)布雷顿循环发电机组中主设备S-CO2锅炉作为研究目标,以5MW试验机组作为研究对象,开展S-CO2锅炉性能指标评价体系研究。S-CO2锅炉的核心性能指标为锅炉燃料效率、换热面吸热量占比、空气预热器性能、工质系统压降和锅炉NOx排放浓度等。燃料效率计算中,通过计算尾部烟气含氧量进行过量空气系数推算燃料消耗量和风量,并改进排烟热损失的计算方法。引入了换热面吸热量占总吸热量比值作为SCO2锅炉工质侧性能考核指标。建立了5 MW S-CO2燃气锅炉性能指标评价体系并集成程序且完成案例分析。实际工况与研究对象的设计参数(设计效率93.53%)基本相当,最终计算获得锅炉燃料效率未经修正为92.05%,锅炉燃料效率修正为93.79%。  相似文献   

7.
研究了水平管内低质量流量超临界二氧化碳(S-CO2)异常传热行为,采用Fluent软件模拟了水平管内低质量流量条件下S-CO2传热过程,分析了加热和冷却条件的异常传热行为和热流密度对传热影响。结果表明:热边界条件为压力8 MPa、质量流率200 kg/(m2·s)、热值比q/G=0.2 kJ/kg时,S-CO2管内流动冷却过程中上、下壁面温度均沿程降低,在S-CO2主流温度达到拟临界温度时,距离入口551.0 mm处上壁面换热系数出现突变峰值,该处传热强化;S-CO2管内流动加热过程中上壁面温度均先沿程升高,而后下降至395 K后缓慢上升,下壁面温度短暂降温后缓慢升温,距离入口69.5 mm处上壁面传热系数出现谷值,该处传热恶化;热流密度的增大使加热条件下换热恶化程度加剧,但对冷却换热并无明显影响。由此可见,特征截面的热物性分布是导致出现不同换热行为的主要原因。最后,基于低质量流量条件、热物性及浮升力影响,构建了预测超临界强化传热关联式,为超临界流体换热设...  相似文献   

8.
超临界二氧化碳(S-CO2)循环具有透平尺寸小、压缩机功耗小、循环效率高等诸多优势。为了探究S-CO2循环耦合燃气轮机发电系统后发电效率最高的循环配置,提出了4种循环布局;并通过遗传算法以循环效率最高为优化目标,对循环系统的主要参数进行优化;对该方案进行动态系统分析,以底部循环输入热负荷为扰动变量,探究从满负荷分别阶跃降低到90%负荷、80%负荷和70%负荷后系统的动态响应情况。结果表明:4种方案中燃气轮机/两透平S-CO2联合循环系统循环效率最高,为44.87%;烟气换热器附近参数响应时间比较快,而由于热惯性的影响在工质流程中离烟气换热器越远响应时间越长;且在同一位置,压力的响应时间略长于温度的响应时间,高温透平附近参数的下降幅度大于低温透平。  相似文献   

9.
高性能超临界二氧化碳(S-CO2)换热器是实现S-CO2布雷顿循环系统高效紧凑化的关键核心设备,S-CO2在光滑通道内换热系数较低,寻求高换热性能与低阻换热结构是发展高效紧凑式换热器的关键。采用五轴电火花成型技术制造出直肋管,通过实验方法研究了S-CO2在四头直肋管内传热规律,系统分析了流动参数对直肋管强化传热特性影响,定量评估了直肋管与光管换热能力的差异;采用数值模拟方法研究了直肋管结构参数对强化传热和阻力特性的影响规律,获得最优的直肋管结构。结果表明:增加压力和质量流速可以降低壁面温度,提高对流换热系数,直肋管的平均换热能力是圆形光管的1.96倍左右;相较于圆形光管,直肋管可以有效延迟传热恶化发生,且使传热恶化延迟能力提升0.3~1.8倍;当固定肋宽0.5 mm,肋高2.5 mm,直肋管的综合换热能力最好,综合换热因子为1.58;而固定肋高为0.5 mm,高宽比0.33,直肋管的综合换热能力最好,综合换热因子为1.22。  相似文献   

10.
超临界二氧化碳(S-CO2)布雷顿(Brayton)动力循环由于高效、紧凑等特性被广泛关注。然而,对于大型(1 000 MW等级)S-CO2燃煤电厂,较高的冷却壁入口温度以及较大的炉膛燃烧热流密度会导致冷却壁过热超温。对此,本文建立了锅侧燃烧/炉侧S-CO2传热耦合模型用于冷却壁的热安全分析。通过冷却壁一维周向平均温度计算,提出了引入烟气再循环降低冷却壁温度的方法,并进一步提出了冷却壁分区顺逆流的优化布置。此外,考察了冷却壁三维温度分布,并进一步引入了螺旋冷却壁降低炉膛周向热点温度。结果表明,本文提出的优化方法可以有效降低冷却壁温度并消除局部热点,对大容量S-CO2燃煤锅炉的工程设计具有指导意义。  相似文献   

11.
在立式热解炉中进行垃圾热解气化实验,研究加热气体组分、预热温度、加热温度等对热解过程的影响。实验结果表明:在热解过程中CO2的存在有利于热解的进行,并且能够在一定程度上提高气相和液相产物的品质;有效传热系数随着预热温度和加热温度的升高而增大。在相同的预热温度和加热温度时,相比于N2、N2/CO2气氛,CO2气氛下的有效传热系数有所增加。在预热温度为300℃、加热温度为800℃时,N2、CO2、N2/CO2 3种气氛下的有效传热系数分别为181.24 W/(K·m3)、244.87 W/(K·m3)、228.46 W/(K·m3), CO2的存在有利于热量从加热气体向物料传递。  相似文献   

12.
超临界二氧化碳(S-CO2)循环是近年来受到广泛关注的发电技术。工质热物性是循环设计和优化的基础。本文综述了CO2热力学性质和输运性质的实验数据和计算模型的研究进展,并结合S-CO2动力系统的设计和运行需求进行了分析。针对研究现状,指出了亟待解决的问题:近临界区实验和理论研究尚有不足;比热容、声速、黏度和导热系数在液相区和高温高压区实验研究存在空白;已有的多种计算模型缺乏针对发电循环应用的系统评估和比较等。建议针对S-CO2循环需要的CO2热物性在具有空白区域重点开展实验和模型工作,并对已有工作进行系统评估。  相似文献   

13.
超临界二氧化碳(supercritical carbon dioxide,S-CO2)布雷顿循环发电技术具有多方面优势,未来应用潜力巨大。S-CO2叶轮机械一般选用泄漏量极低的干气密封,但是S-CO2的特殊物性对干气密封的密封性能的影响显著,针对S-CO2干气密封的性能研究多以理论仿真为主,少有试验研究支撑。针对不同运行工况下的S-CO2干气密封的稳态性能,该文搭建高速高压干气密封试验台,试验研究不同转速、进气压力、进气温度对SCO2干气密封的泄漏量和摩擦耗功的影响规律,并将泄漏量的理论计算结果与试验值进行对比。结果表明:S-CO2干气密封的泄漏量及摩擦耗功随转速、压力的升高及温度的降低而增大,转速与压力的影响较大,温度的影响较小。泄漏量计算值与试验值存在一定偏差,最大偏差在20%左右。结果可为理论计算模型及计算方法的修正提供参考,以进一步分析S-CO2干气密封的密封性能。  相似文献   

14.
油纸绝缘在实际运行过程中,受到电—热耦合应力作用,其内部产生的气体以气泡的形式从界面处析出,造成局部放电甚至绝缘击穿,危害变压器的运行安全。文中通过搭建油纸绝缘电—热耦合实验平台,分别对不同温度、不同电场强度以及不同含水率条件下的油纸绝缘模型进行实验,实验结果表明,随着电场强度以及含水率的提高,气泡析出的起始温度逐渐下降。由此进一步建立油纸绝缘界面分子动力学仿真模型,以绝缘纸老化裂解过程中产生较多的CO2为例,对其在油纸绝缘界面处的聚集状态、相对浓度,扩散系数,氢键作用以及自由体积分数进行了研究。模拟结果表明,升温提高了自由体积分数,促进了CO2分子的布朗运动,较多CO2分子扩散至界面处与绝缘油中,扩散系数提高了187.96%。相同温度作用下,随着电场强度的增大,CO2分子与其他分子间形成的氢键数量减少,导致CO2受到的分子间作用力减小,290 K时,电场从50 kV/m增大到200 k V/m时,扩散系数平均提高了90.41%;360 K时,提高14.02%。含水率的提高使得...  相似文献   

15.
为提升燃煤机组运行灵活性,提出了燃煤发电集成超临界二氧化碳(S-CO2)储能循环的热力系统,并基于热力学?分析方法,研究了运行参数对系统不可逆损失的影响。研究结果表明:该系统储能效率可达56.14%,S-CO2流量及S-CO2压缩机/透平压比对系统?效率影响较大;当S-CO2流量在50 kg/s至70 kg/s间增大,系统?效率从44.0%增大至61.0%;当压缩机/透平压比在3.0至6.0间增大,系统?效率从27.5%增大至52.5%。本文提出的方法为提升燃煤机组运行灵活性提供了理论参考,并为可再生能源大规模并网提供了思路。  相似文献   

16.
超临界二氧化碳(S-CO2)布雷顿循环发电技术被认为是最具前景的发电技术之一。在S-CO2发电系统启动/停机或者较低负荷的条件下,主压缩机送出的S-CO2在不能够充分回热的条件下直接进入S-CO2锅炉,会使S-CO2锅炉气冷壁内的大量S-CO2工作在拟临界温度点附近,致使S-CO2流动不稳定性成为S-CO2锅炉必须考虑的问题。本文以S-CO2锅炉气冷壁最为常见的布置结构(即垂直上升加热管)为研究背景,首先构建了S-CO2流动不稳定性的计算模型,随后进行了大量的数值计算,研究了典型工况下的S-CO2流动不稳定性特点,获取了主要边界参数对界限热流密度的影响规律。结果显示:随着入口压力或者质量流量的增大,界限热流密度显著提升,管内流动稳定性有明显提高;随着入口温度的提高,界限热流密度先降低再升高;对于不同的工况,存在1个临界入口温度,在该入口温度下,界限热流密度最低,管内流动稳定性最差。  相似文献   

17.
构建高参数燃气轮机与超临界二氧化碳(S-CO2)联合循环模型,并开展热力性能分析。顶循环采用燃烧室排气温度为1 800℃的高参数燃气轮机,底循环采用S-CO2朗肯双透平循环,同时采用三级烟气加热和两级透平排气回热;通过惩罚函数法,得到优化后的联合循环工况下的参数和热力性能,分析了高参数燃气轮机顶循环和S-CO2朗肯底循环主要参数对联合循环性能的影响规律。结果表明:在燃气轮机压比为35.5,燃烧室出口温度为1800℃时,联合循环热效率可达68.61%,燃气轮机与S-CO2朗肯循环效率比燃气-蒸汽联合循环提高2.3百分点。  相似文献   

18.
超临界二氧化碳(S-CO2)循环发电技术因其自身的技术优势成为热力发电领域一项具有划时代意义的重大变革性前沿技术,由于十分苛刻的工作环境,S-CO2易造成设备材料腐蚀。为确保S-CO2系统安全有效地运行,首先介绍了S-CO2布雷顿循环系统工质运行参数范围以及系统关键设备候选材料,其次综述了目前有关金属材料在S-CO2环境中的腐蚀行为研究现状,然后详细阐述了S-CO2环境下的腐蚀机理,归纳了温度、压力、杂质、流速以及材料成分对S-CO2腐蚀过程的影响,同时介绍了S-CO2腐蚀防控技术的研究进展,最后进行了总结并指出了现有研究的不足及未来研究的主要方向,为我国S-CO2循环系统的安全运行提供科学依据。  相似文献   

19.
针对超临界二氧化碳(S-CO2)燃煤锅炉冷却壁热边界条件的实际分布,采用SST k-ω低雷诺数湍流模型,数值模拟研究了半周加热轴向非均匀热流作用下S-CO2在垂直圆管内的传热特性,分析了不同热流分布、质量流速对换热性能以及圆管内壁温度分布的影响。研究结果表明:轴向非均匀热流分布对S-CO2传热具有显著影响,在平均热流相同的条件下,相较于均匀热流分布,轴向非均匀热流分布下总传热系数最大提高了约8%;轴向非均匀热流分布对传热恶化有抑制作用,有效降低了壁温峰值点;非均匀热流条件下,S-CO2传热主要受类气膜厚度、类气膜导热系数及近壁区定压比热容的影响较大。研究结果可为燃煤S-CO2锅炉设计提供理论指导。  相似文献   

20.
液态金属快堆/太阳能光热系统与超临界二氧化碳(S-CO2)布雷顿循环发电系统深度融合,必将引领能源动力领域革命性发展。由于液态金属与S-CO2的特殊物理性质,液态金属普朗特数远低于常规流体,S-CO2的物理性质奇异性变化,其流动换热特性与常规流体存在显著差别,其流动与传热机理比较复杂,耦合传热机理尚不明朗。本文归纳总结了国内外关于S-CO2、液态金属、耦合换热与耦合换热器在实验、数值模拟、传热预测模型的主要研究成果,指出液态金属与S-CO2流动换热及其耦合传热研究中存在的问题,为先进动力循环系统以及多工质耦合动力系统的设计和安全运行提供参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号