首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Theoretical considerations on the determining the binding constants (eta) of ligands to proteins were carried out. Whereas for a one-subunit protein the relationship between thermal inactivation rates and ligand concentration there is a simple linear function, for a protein with two subunits, a second-order relationship is derived. If the theory for one-subunit proteins is applied to multi-subunit proteins, the derived values of eta tend to be lower than the real binding constants. A method of determining the ligand binding constant for a two-subunit protein is described.  相似文献   

2.
Phosphatidylcholine dispersed on Celite was rapidly solubilized by neutral bovine serum albumin solutions. Stable protein-lipid complexes were isolated by Agrose gel filtration or by ultracentrifugal flotation in high density solvents, and the physicochemical properties of the complexes were investigated in terms of the stoichiometry of binding, effect of fatty acid ligands on phosphatidylcholine binding, effect of high ionic strength on the stability of the complexes, intrinsic fluorescence and circular dichroism spectra, and sedimentation velocity coefficients. Complexes containing from 2 to 30 phosphatidylcholine molecules per protein molecule were observed; however, no saturation of binding sites could be detected in this range of molar ratios. Oleic acid binding by serum albumin prevents interaction of the protein with phosphatidylcholine, indicating possible competition of these ligands at low contents of the phospholipid. For molar ratios of up to 10 phosphatidylcholine molecules per serum albumin, binding is primarily due to hydrophobic interactions that have no effect on the overall shape and secondary structure of the native protein except for local modifications at tryptophan residues, whose fluorescence becomes quenched and blue shifted on phosphatidylcholine binding. Similar phosphatidylcholine uptake experiments performed with a series of globular proteins indicated that the lipid extraction from Celite surfaces is a non-specific process, accelerated by several other proteins (e.g. aldolase, egg albumin, chymotrypsinogen, soybean trypsin inhibitor, and the major apolipoprotein from bovine serum high density lipoprotein). Formation of stable protein-lipid complexes, however, was only observed with bovine serum albumin, which in contrast to the other proteins is known to have affinity binding sites for anions with hydrophobic side chains.  相似文献   

3.
Using the design of bivalent and bridge-binding inhibitors of thrombin as an example, we review an NMR-based experimental approach for the design of functional mimetics of protein-protein interactions. The strategy includes: (i) identification of binding residues in peptide ligands by differential resonance perturbation, (ii) determination of protein-bound structures of peptide ligands by use of transferred NOEs, (iii) minimization of larger protein and peptide ligands on the basis of NMR structural information, and (iv) linkage of two weakly binding mimetics to produce an inhibitor with enhanced affinity and specificity. This approach can be especially effective for the design of potent and selective functional mimetics of protein-protein interactions because it is less likely that the surfaces of two related proteins or enzymes share two identical binding sites or regions.  相似文献   

4.
LIGSITE is a new program for the automatic and time-efficient detection of pockets on the surface of proteins that may act as binding sites for small molecule ligands. Pockets are identified with a series of simple operations on a cubic grid. Using a set of receptor-ligand complexes we show that LIGSITE is able to identify the binding sites of small molecule ligands with high precision. The main advantage of LIGSITE is its speed. Typical search times are in the range of 5 to 20 s for medium-sized proteins. LIGSITE is therefore well suited for identification of pockets in large sets of proteins (e.g., protein families) for comparative studies. For graphical display LIGSITE produces VRML representations of the protein-ligand complex and the binding site for display with a VRML viewer such as WebSpace from SGI.  相似文献   

5.
A novel human cDNA encoding a cytosolic 62-kDa protein (p62) that binds to the Src homology 2 (SH2) domain of p56lck in a phosphotyrosine-independent manner has been cloned. The cDNA is composed of 2074 nucleotides with an open reading frame encoding 440 amino acids. Northern analysis suggests that p62 is expressed ubiquitously in all tissues examined. p62 is not homologous to any known protein in the data base. However, it contains a cysteine-rich region resembling a zinc finger motif, a potential G-protein-binding region, a PEST motif, and several potential phosphorylation sites. Using T7-epitope tagged p62 expression in HeLa cells, the expressed protein was shown to bind to the lck SH2 domain. Deletion of the N-terminal 50 amino acids abolished binding, but mutagenesis of the single tyrosine residue in this region had no effect on binding. Thus, the cloned cDNA indeed encodes the p62 protein, which is a phosphotyrosine-independent ligand for the lck SH2 domain. Its binding mechanism is unique with respect to binding modes of other known ligands for SH2 domains.  相似文献   

6.
The recognition of carbohydrate epitopes by complimentary protein receptors has been shown to be a critical factor in gamete interaction in many different animal species. In this study it was hypothesized that, in the human, gamete binding requires an interaction between selectin ligands on the zona pellucida and putative egg binding proteins on the sperm surface. The hemizona assay (a unique internally controlled bioassay that evaluates tight binding of sperm to the zona) and advanced methods of carbohydrate analysis were used to test this hypothesis. From these tests it was shown that oligosaccharide recognition is also required for initial human gamete binding. This study suggests the existence of distinct egg binding proteins on human sperm that can bind to selectin ligands. Additionally, the results suggest a possible convergence in the types of carbohydrate sequences recognized during initial human gamete binding and immune/inflammatory cell interactions. Glycoconjugates that manifest selectin-ligand activity and that express specific carbohydrate epitopes have potent contraceptive and immunosuppressive effects. Such specific oligosaccharide sequences may provide an appropriate recognition signal for embryo development and protection.  相似文献   

7.
Culturing Neurospora crassa in presence of toxic amounts of copper (0.63 mM) resulted in blue coloured mycelia and cell walls. Significant amounts (approximately 45%) of total mycelial copper were associated with cell wall isolates under conditions of copper toxicity. Hence, such blue cell walls were analysed to identify specific ligands involved in copper binding. While decuprification of the blue cell walls with 8-hydroxy quinoline (8 HQ) did not alter their copper binding abilities, similar treatment with EDTA (10 mM) decreased such abilities indicating that EDTA treatment lead to loss of copper binding ligands from cell walls. Treatment of blue cell walls with 8 HQ followed by EDTA resulted in the solubilization of a copper binding protein (relative MW approximately 14 kDa) which was associated with phosphate and carbohydrate moieties. On amino acid analysis, this protein was found to be devoid of free thiol groupings but enriched in acidic and basic amino acids, distinguishing it from classical intracellular metal binding proteins such as metallo-thioneins and phytochelatins that are inducively synthesized under conditions of metal toxicity. The biological significance of the isolated wall-bound copper binding protein, which appears to be a normal constituent of cell walls, is discussed in relation to cytoplasmic metal binding proteins and mechanism(s) adapted by fungi in countering metal toxicity.  相似文献   

8.
9.
Growth kinetics, siderophore activity and iron-regulated bacterial proteins of Acinetobacter baumannii BM2580 were studied in iron-restricted and iron-supplemented chemically defined media. Iron-regulated outer membrane proteins of 75 kDa and 80 kDa were expressed under iron-restricted conditions. Cloning and sequencing of the complete iron-uptake regulatory (fur) gene from A. baumannii BM2580 is reported for the first time. This gene is preceded by a single autoregulated promoter whose -10 region overlaps the Fur binding site. The open reading frame identified encodes a polypeptide consisting of 145 amino acids. The fur gene is followed by a divergent open reading frame coding for the C-terminus of a putative PilU protein. Sequence analysis indicates that the Fur protein of A. baumannii was 63% identical to the Escherichia coli Fur protein.  相似文献   

10.
WW domains are conserved protein motifs of 38-40 amino acids found in a broad spectrum of proteins. They mediate protein-protein interactions by binding proline-rich modules in ligands. A 10 amino acid proline-rich portion of the morphogenic protein, formin, is bound in vitro by both the WW domain of the formin-binding protein 11 (FBP11) and the SH3 domain of Abl. To explore whether the FBP11 WW domain and Abl SH3 domain bind to similar ligands, we screened a mouse limb bud expression library for putative ligands of the FBP11 WW domain. In so doing, we identified eight ligands (WBP3 through WBP10), each of which contains a proline-rich region or regions. Peptide sequence comparisons of the ligands revealed a conserved motif of 10 amino acids that acts as a modular sequence binding the FBP11 WW domain, but not the WW domain of the putative signal transducing factor, hYAP65. Interestingly, the consensus ligand for the FBP11 WW domain contains residues that are also required for binding by the Abl SH3 domain. These findings support the notion that the FBP11 WW domain and the Abl SH3 domain can compete for the same proline-rich ligands and suggest that at least two subclasses of WW domains exist, namely those that bind a PPLP motif, and those that bind a PPXY motif.  相似文献   

11.
We have studied the interactions of the nervous tissue-specific chondroitin sulfate proteoglycans neurocan and phosphacan with the extracellular matrix protein tenascin-R and two heparin-binding proteins, amphoterin and the heparin-binding growth-associated molecule (HB-GAM), using a radioligand binding assay. Both proteoglycans show saturable, high affinity binding to tenascin-R with apparent dissociation constants in the 2-7 nM range. Binding is reversible, inhibited in the presence of unlabeled proteoglycan, and increased by approximately 60% following chondroitinase treatment of the proteoglycans, indicating that the interactions are mediated via the core (glyco)proteins rather than by the glycosaminoglycan chains, which may in fact partially shield the binding sites. In contrast to their interactions with tenascin-C, in which binding was decreased by approximately 75% in the absence of calcium, binding of phosphacan to tenascin-R was not affected by the absence of divalent cations in the binding buffer, although there was a small but significant decrease in the binding of neurocan. Neurocan and phosphacan are also high affinity ligands of amphoterin and HB-GAM (Kd = 0.3-8 nM), two heparin-binding proteins that are developmentally regulated in brain and functionally involved in neurite outgrowth. The chondroitin sulfate chains on neurocan and phosphacan account for at least 80% of their binding to amphoterin and HB-GAM. The presence of amphoterin also produces a 5-fold increase in phosphacan binding to the neural cell adhesion molecule contactin. Immunocytochemical studies showed an overlapping localization of the proteoglycans and their ligands in the embryonic and postnatal brain, retina, and spinal cord. These studies have therefore revealed differences in the interactions of neurocan and phosphacan with the two major members of the tenascin family of extracellular matrix proteins, and also suggest that chondroitin sulfate proteoglycans play an important role in the binding and/or presentation of differentiation factors in the developing central nervous system.  相似文献   

12.
Affinity filters were investigated for their potential in the recovery of proteins from complex samples. The experiments covered membranes carrying high and low molecular weight affinity ligands as well as group and substance specific ones. For the ready-to-use affinity filters the specific protein binding capacity was determined and compared to that of the respective Sepharose affinity gels (Pharmacia). In the case of the pre-activated membranes the influence of the coupling chemistry on the affinity mediator concentration and the protein binding capacity were considered in the study. In the case of low molecular weight ligands (e.g. Cibacron Blue, Heparin) either type of membrane yielded stationary phases of a ligand concentration, binding capacity, resolution, and long term stability similar to that of the corresponding Pharmacia material. However, the membranes could be used at a higher flow rate than the columns, since they are less mass transfer limited and cause significantly less back pressure. The immobilization of high molecular weight ligands such as antibodies (immuno filtration) on the other hand, resulted in low ligand concentrations and worse antigen binding capacities whenever conventional immobilization procedures, e.g. epoxy group-based reactions, were used. In contradistinction, good results were obtained with tosyl- and tresyl activated membranes. Such membranes were successfully employed for the immobilization of monoclonal antibodies (mAb) and Concanavalin A. Concanavalin A and an anti gp 220/350 mAb were subsequently used to produce affinity filters for the isolation of a recombinant gp 220/350 Epstein-Barr virus surface antigen from culture supernatants of a Chinese hamster ovary cell line grown in protein-free medium.  相似文献   

13.
The aim of this work was to define the chemical structure of compounds self-assembling in water solutions, which appear to interact with proteins as single ligands with their supramolecular nature preserved. For this purpose the ligation to proteins of bis azo dyes, represented by Congo red and its derivatives with designed structural alterations, were tested. The three parameters which characterize the reactivity of supramolecular material were determined in the same conditions for all studied dyes. These were: A) stability of the assembly products; B) binding to heat-denatured protein (human IgG); and C) binding to native protein (rabbit antibodies in the immune complex) measured by the enhancement of hemagglutination. The structural differences between the Congo red derivatives concerned the symmetry of the molecule and the structure of its non-polar component, which occupies the central part of the dye molecule and is thought to be crucial for self-assembly. Other dyes were also studied for the same purpose: Evans blue and Trypan blue, bis-ANS and ANS, as well as a group of compounds with a structural design unlike that of bis azo dyes. Compounds with rigid elongated symmetric molecules with a large non-polar middle fragment are expected to form a ribbon-like supramolecular organization in assembling. They appeared to have ligation properties related to their self-assembling tendency. The compounds with different structures, not corresponding to bis azo dyes, did not reveal ligation capability, at least in respect to native protein. The conditions of binding to denatured proteins seem less restrictive than the conditions of binding to native molecules. The molten hydrophobic protein interior becomes a new binding area allowing for complexation of even non-assembled molecules.  相似文献   

14.
Siderophores and colicins enter bacterial cells through TonB-dependent outer membrane proteins. Using site-directed substitution mutagenesis, we studied ligand recognition by a prototypic Escherichia coli siderophore receptor, FepA, that binds the iron chelate ferric enterobactin and colicins B and D. These genetic experiments identified a common binding site for two of the three ligands, containing multiple positive charges, within cell surface residues of FepA. Elimination of single residues in this region did not impair the adsorption or transport of ferric enterobactin, but double mutagenesis in the charge cluster identified amino acids (Arg-286 and Arg-316) that participate in siderophore binding and function in FepA-mediated killing by colicins B and D. Ferric enterobactin binding, furthermore, prevented covalent modification of FepA within this domain by either a fluorescent probe or an arginine-specific reagent, corroborating the involvement of this site in ligand recognition. These results identify, for the first time, residues in a TonB-dependent outer membrane protein that participate in ligand binding. They also explain the competition between ferric enterobactin and the colicins on the bacterial cell surface: all three ligands interact with the same arginine residues within FepA during their penetration through the outer membrane.  相似文献   

15.
In a situation so far unique among neurotransmitter receptors, glutamate receptors share amino acid sequence similarities with the bacterial periplasmic binding proteins (PBPs). On the basis of the primary structure similarity of two bacterial periplasmic proteins (lysine/arginine/ornithine- and phosphate-binding proteins) with the chick cerebellar kainate-binding protein (KBP), a member of the ionotropic glutamate receptor family, we have generated a three-dimensional model structure of the KBP extracellular domain. By an interplay between homology modeling and site-directed mutagenesis, we have investigated the kainate binding properties of 55 different mutants (corresponding to 43 positions) and studied the interactions of some of these mutants with various glutamatergic ligands. As a result, we present here the subsets of amino acids accounting for the binding free energies and specificities of KBP for kainate, glutamate, and CNQX and propose a three-dimensional model, at the microarchitectural level, of the glutamatergic binding domain.  相似文献   

16.
A patient (OG) with Glanzmann thrombasthenia became refractory to platelet transfusion after the production of an immunoglobulin G (IgG) isoantibody (Ab1) specific for the integrin subunit beta 3. To determine the frequency at which the OG idiotype is found in the general population and in immune-mediated disease states, we developed a rabbit polyclonal antibody (Ab2) specific for affinity-purified OG anti-beta 3 Fab. The binding of Ab2 to Ab1 is inhibited by purified alpha IIb beta 3. Ab2 als binds to IgG specific for alpha IIb beta 3 obtained from one nonrelated Glanzmann thrombasthenia patient ES who has developed isoantibodies of similar specificity. On the other hand, Ab2 does not recognize alpha IIb beta 3-specific antibodies produced by two Glanzmann thrombasthenia patients, AF and LUC, who have developed isoantibodies with specificities distinct from that of the OG isoantibody. Moreover, Ab2 does not recognize alpha IIb beta 3-specific antibodies developed by three representative patients with (autoimmune) thrombocytopenic purpura or six representative patients with alloimmune thrombocytopenias, nor does it bind to IgG from any of 13 nonimmunized individuals. We have found that Ab2 also binds to selected protein ligands of alpha IIb beta 3 namely, fibrinogen, vitronectin, and von Willebrand factor, but not to other protein ligands or control proteins, such a fibronectin, type I collagen, and albumin. The epitope(s) recognized by Ab2 on each adhesive protein are either very similar or identical since each protein can inhibit the binding of Ab2 to any of the other proteins. The epitope on fibrinogen recognized by Ab2 resides in the B beta chain, and is likely contained within the first 42 amino acids from the NH2 terminus. Since OG IgG inhibits fibrinogen binding to alpha IIb beta 3, the specificity of the OG idiotype defines a novel binding motif for the integrin alpha IIb beta 3 that is shared by fibrinogen, vitronectin, and von Willebrand factor, but distinct from previously described RGD-containing sites on the fibrinogen, A alpha chain or the fibrinogen gamma chain COOH-terminal decapeptide site. Our findings reported here represent an excellent example of molecular mimicry in which an antigen-selected, IgG inhibitor of alpha IIb beta 3 function shares a novel recognition sequence common to three physiologic protein ligands of that receptor.  相似文献   

17.
The utility of the present generation of recombinant adenovirus vectors for gene therapy applications could potentially be improved by designing targeted vectors capable of gene delivery to selected cell types in vivo. In order to achieve such targeting, we are investigating the possibilities of incorporation of ligands in the adenovirus fiber protein, which mediates primary binding of adenovirus to its cell surface receptor. Based on the proposed structure of the cell-binding domain of the fiber, we hypothesized that the HI loop of the fiber knob can be utilized as a convenient locale for incorporation of heterologous ligands. In this study, we utilized recombinant fiber proteins expressed in baculovirus-infected insect cells to demonstrate that the incorporation of the FLAG octapeptide into the HI loop does not ablate fiber trimerization and does not disturb formation of the cell-binding site localized in the knob. We then generated a recombinant adenovirus containing this modified fiber and showed that the short peptide sequence engineered in the knob is compatible with the biological functions of the fiber. In addition, by using a ligand-specific antibody, we have shown that the peptide incorporated into the knob remains available for binding in the context of mature virions containing modified fibers. These findings suggest that heterologous ligands can be incorporated into the HI loop of the fiber knob and that this locale possesses properties consistent with its employment in adenovirus retargeting strategies.  相似文献   

18.
Protein-protein and protein-peptide interactions that are low affinity in nature preclude the straightforward measurement of binding. To overcome this limitation, a novel method has been devised for stabilizing these weak interactions by increasing the binding avidity. These studies have focused on the binding of peptides to heat shock proteins (with a typical KD of approximately 25 to 50 microM). Multivalent ligands have been created by coupling peptides plus biotin to a neutral carrier molecule, dextran. These peptide-dextran conjugates allow for more avid binding to proteins that have been immobilized on a membrane surface. Detection of signals via enhanced chemiluminescence further increases the sensitivity of the method that has been termed Chemiluminescence of Enhanced Avidity Reactions (CLEAR). The assay is simple, reliable and consistently detects specific binding between heat shock proteins and peptide ligands. CLEAR should be generally applicable to other ligand receptor pairs where the detection of binding is limited by the low affinity of the interaction.  相似文献   

19.
The pH dependence of the association of apo trp repressor with the series of ligands, tryptophan, tryptamine, indole propionic acid (IPA), and trans-beta-indole acrylic acid (IAA), has been studied using fluorescence titrations and isothermal titration microcalorimetry (ITC). The purpose of such a comparison of ligands and the pH dependency studies is to reveal the role played by the side-chain functional groups in the energetics of the binding of the ligands to the protein. We find that, whereas the binding of tryptamine and IPA have essentially no pH dependence between pH 6 and 10, the binding of tryptophan and IAA depends on pH. For IAA, the affinity drops between pH 6 and 10, consistent with a shift in pKa of some group on the protein from a value of pKa 7.4 to 7.9 upon binding of this ligand. The affinity of IAA also drops below pH 5, but shows saturable binding at pH 2-3, where the protein has previously been found to exist as a partially folded monomeric state. For tryptophan, the pH dependence data indicate that the equilibrium is complicated. We present a model to describe the data in which the alpha-ammonium group of tryptophan has its pKa shifted upward upon binding (i.e. preferential binding of the protonated form of this functional group) and in which the pKa of an unknown group on the protein also has its pKa increased.  相似文献   

20.
Glycoprotein gp150 is a highly glycosylated protein encoded by the BDLF3 open reading frame of Epstein-Barr virus (EBV). It does not have a homolog in the alpha- and betaherpesviruses, and its function is not known. To determine whether the protein is essential for replication of EBV in vitro, a recombinant virus which lacked its expression was made. The recombinant virus had no defects in assembly, egress, binding, or infectivity for B cells or epithelial cells. Infection of epithelial cells was, however, enhanced. The glycoprotein was sensitive to digestion with a glycoprotease that digests sialomucins, but no adhesion to cells that express selectins that bind to sialomucin ligands could be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号