首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The deformation behaviour of amorphous thin films of poly(ether ether ketone) (PEEK)/poly(ether imide) (PEI) blends was investigated over a wide temperature range by optical and transmission electron microscopy. All the materials showed localized shear deformation at temperatures well below Tg. In pure PEI and in blends with up to 60 wt% PEEK content, a transition from shear deformation to disentanglement crazing occurred as the temperature was raised. However, this transition was absent in PEEK, which deformed by shear over the whole temperature range, and similar behaviour was found for PEI/80 wt% PEEK. It is argued that at high PEEK content disentanglement crazing is suppressed by strain-induced crystallization and some evidence for crystalline order in deformed regions of initially amorphous PEEK thin films was obtained by electron diffraction. The thin film deformation behaviour of the blends was also shown to be consistent with their bulk deformation behaviour, a high temperature ductile–brittle transition being observed at low PEEK content in tensile tests. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
以聚醚醚酮(PEEK)为基体树脂、碳纤维(CF)和氮化铝(AlN)为填料,通过模压成型的方法制备了抗静电耐热型CF-AlN/PEEK复合材料。采用高阻计、导热系数测定仪、热失重、差示扫描量热仪和SEM研究了CF-AlN/PEEK复合材料的抗静电性能、热性能、力学性能以及降温速率对复合材料性能的影响,并探讨了后期热处理对力学性能的影响。结果表明:当CF和AlN的质量分数均为10%时,CF-AlN/PEEK复合材料的性能较优,其表面电阻率达到108 Ω,比PEEK的表面电阻率提高了6个数量级;导热系数为0.418 W·(m·K)-1,初始分解温度高达573℃;拉伸强度提高了40.4%;降温速率越低,复合材料的熔点越高;后期热处理会影响CF-AlN/PEEK复合材料的力学性能,在270℃下热处理2 h,其拉伸强度可达146 MPa,表明在生产过程中,加工温度是影响复合材料性能的因素之一。   相似文献   

3.
Pristine carbon nanotubes (CNTs) and noncovalently functionalized carbon nanotubes (f-CNTs) were used to prepare poly(ether ether ketone) (PEEK) composites (CNTs/PEEK and f-CNTs/PEEK) via melt blending. Noncovalently functionalized multiwalled nanotubes were synthesized using hydrogen-bonding interactions between sulfonic groups of sulfonated poly(ether ether ketone) (SPEEK) and carboxylic groups of nanotubes treated by acid (CNTs–COOH). The effects of these two kinds of nanotubes on the mechanical properties and crystallization behavior of PEEK were investigated. CNTs improved mechanical properties and promoted the crystallization rate of PEEK as a result of heterogeneous nucleation. Better enhancement of mechanical properties appeared in the f-CNTs/PEEK composites, which is ascribed to the good interaction between f-CNTs and PEEK. However, the strong interaction of f-CNTs and PEEK chains decreased the crystallization rate of PEEK for high content of f-CNTs.  相似文献   

4.
Graphene/poly(ether ether ketone) (m-TRG/PEEK) composites with excellent electrical conductivity were fabricated by hot pressing technique with thermally reduced graphene nanosheets (m-TRG) which were modified by poly(ether sulfone). Moreover, the conductive, thermal, and mechanical properties of PEEK/m-TRG composites were investigated by the precision impedance analyzer, thermal gravimetric analyzer, differential scanning calorimetry, and universal tester, respectively. The electrical conductivity of m-TRG/PEEK composites was greatly improved by incorporating graphene, resulting in a sharp transition from electrical insulator to semiconductor with a low percolation threshold of 0.76 vol.%. A high electrical conductivity of 0.18 S m?1 was achieved with 3.84 vol.% of m-TRG. The data were compared with those of composites reduced chemically, and the results showed that thermal reduction was an effective method to acquire higher electrical conductive composites. The excellent electrical property should be attributed to the large specific surface area of m-TRG, well dispersion of m-TRG in PEEK matrix, and good compatibility of m-TRG with PEEK matrix, as proven by scanning electron microscope. Besides, m-TRG/PEEK composites also exhibited relatively good thermal and mechanical properties.  相似文献   

5.
聚醚醚酮增韧改性环氧树脂   总被引:4,自引:1,他引:3  
采用共混法用聚醚醚酮(PEEK)改性环氧树脂(EP),借助差示扫描量热分析(DSC)确定了环氧树脂的固化工艺,测试了共混体系的工艺性能,研究了聚醚醚酮含量对环氧树脂力学性能的影响.借助扫描电子显微镜(SEM)对材料断裂面的形态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系.结果表明,在改性材料的韧性有所提高的同时,压缩强度、马丁耐热都没有降低.从断裂面的形态来看,是属于韧性断裂.当PEEK的加入量为6%时,韧性最好,达到19.1 kJ/m2,比纯的环氧树脂增加了107.6%.  相似文献   

6.
采用共混法用聚醚醚酮(PEEK)改性环氧树脂(EP),借助差示扫描量热分析(DSC)确定了环氧树脂的固化工艺,测试了共混体系的工艺性能,研究了聚醚醚酮含量对环氧树脂力学性能的影响。借助扫描电子显微镜(SEM)对材料断裂面的形态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系。结果表明,在改性材料的韧性有所提高的同时,压缩强度、马丁耐热都没有降低。从断裂面的形态来看,是属于韧性断裂。当PEEK的加入量为6%时,韧性最好,达到19.1kJ/m~2,比纯的环氧树脂增加了107.6%。  相似文献   

7.
《Composites Part A》2007,38(2):407-426
This paper describes the behaviour of AS4 and T700SC reinforced PEEK composites (SUPreM™ and ACP-2) under applied compressive bending strain. The effect of an increased molecular weight of the polymer matrix on the residual time under endloaded compression bending conditions is studied. Generally for a given composite material, the higher the testing temperature and the applied strain the faster the failure occurs. At test temperatures exceeding the glass transition temperature or at high strain ratios the time-to-failure for CF/PEEK composites follows a master curve. The residual times under endloaded compression bending conditions increase with increasing toughness of the PEEK matrix but decrease with increasing tensile strength of the reinforcing fibres. It seems that the better the fibre/matrix adhesion the lower is the time to failure of an endloaded composite, because more load is transferred from the matrix into the fibres.In order to simulate composite applications under ‘harsh’ conditions the CF/PEEK composites have been exposed to boiling water. PEEK is known to be highly resistant to environmental effects, but water uptake significantly influences the overall performance of CF/PEEK composites under endloaded compression bending conditions. The tensile properties of the composites have been measured as function of exposure time in boiling water. The fibre dominated uniaxial tensile strength is not/or only slightly affected by the boiling water conditioning even after extended exposure times but the transverse tensile strength decreases significantly after exposure to boiling water. The performance of SUPreM™ CF/PEEK-150 and 450 composites under endloaded compression bending conditions are positively affected by water conditioning whereas APC-2 fails at shorter residual times. The fracture behaviour under endloaded conditions is also affected by the ingress of water into the composite.The obtained results show clearly that applications of thermoplastic composites leading to large out of plane deformations can only be ‘safe’ if the maximum service temperatures of the finished part will be well below the glass transition temperature of the polymer matrix otherwise even at low bending radii a dramatic failure of the material cannot be excluded.  相似文献   

8.
Journal of Materials Science - The present study focuses on the preparation and characterization of a poly(ether ether ketone)/poly(ether imide) [PEEK/PEI] blend for application in additive...  相似文献   

9.
A novel high performance conductive material with excellent comprehensive properties was prepared by melt-blending, and its performances were adjusted by controlling the selective location of carbon black (CB) in poly(ether ether ketone) (PEEK)/thermoplastic polyimide (TPI) matrix. With increasing the CB loadings, the morphology of PEEK/TPI blends changed from sea-island to co-continuous structure, which was owing to the selective location of CB in TPI phase. Notably, with the selective location of CB in the induced co-continuous PEEK/TPI matrix, the electrical percolation threshold was reduced to 5 wt%, which was significantly lower than that of binary PEEK/CB (9 wt%) and TPI/CB (10 wt%) composites. And the electrical conductivity of ternary PEEK/TPI/CB composites was 104 to 106 times higher than that of binary composites at identical 7.5 wt% CB loading, which was attributed to the double percolation effect. Moreover, the incorporation of CB could improve the thermal and mechanical properties effectively.  相似文献   

10.
采用浓H2SO4氧化聚醚醚酮(PEEK)得到磺化聚醚醚酮(SPEEK),以3,3'-二烯丙基双酚A (BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、SPEEK为改性剂、双马来酰亚胺(BMI)树脂为基体,浇注成型制备SPEEK/BBA-BBE-BMI复合材料,同时研究了SPEEK的改性效果及复合材料微观形貌与力学性能。结果表明:SPEEK改性效果较好,在FTIR中存在明显的磺酸基团特征峰,SEM和能谱分析表明,SPEEK微观形貌变化明显,硫元素含量较高;SPEEK/BBA-BBE-BMI复合材料的微观形貌显示,SPEEK在基体中呈现直径为2 μm左右的多孔状两相结构,且分散均匀,此多孔结构改善了复合材料的断裂形貌,由脆性断裂转变为韧性断裂,当断裂纹遇到SPEEK组分时受阻而出现不规则发散,此变化会赋予复合材料更加优异的性能。力学性能测试结果显示,当SPEEK含量为5wt%时,SPEEK/BBA-BBE-BMI复合材料的弯曲强度和冲击强度达到最佳,分别为147.93 MPa和15.74 kJ/mm2,分别比基体提高了49.47%和66.21%。  相似文献   

11.
复合改性是进一步提高聚醚醚酮(PEEK)使用性能、扩展其应用领域的重要途径.本文综述了PEEK在热机械性能、摩擦学性能等方面的复合改性研究进展,以及PEEK复合材料在生物假体材料领域、磺化PEEK复合材料在质子交换膜领域的应用研究进展.  相似文献   

12.
碳纤维增强聚醚醚酮(CF/PEEK)是一种高性能热塑性复合材料,在航空航天领域有着广阔的应用前景。由于PEEK具有温度和应变率相关的非线性行为,导致CF/PEEK复合材料在基体主导的面内剪切方向也有类似的力学行为。本文在不同的温度和应变率下对CF/PEEK复合材料试件进行了剪切实验,将应力-应变曲线分为线性与非线性部分,发现温度和应变率对CF/PEEK复合材料的屈服应力有着较大的影响。随着温度从20℃升高到130℃屈服应力下降了66%左右,下降速度先快后慢,随着应变率从10?5 s?1提高到0.1 s?1屈服应力均匀增大了35%左右。将所得规律拟合背应力经验公式,修改了经典的热塑性复合材料本构模型的屈服函数。并编写VUMAT用户子程序对CF/PEEK复合材料剪切实验进行数值分析,与实验结果对比发现非线性阶段的剪切应力-应变关系及屈服点的剪切应力吻合良好,但是由于纤维和PEEK基体的浸润性较差,导致CF/PEEK复合材料内部存在孔隙缺陷,影响了CF/PEEK复合材料的初始剪切弹性行为,导致加载初始阶段存在偏差。   相似文献   

13.
The purpose of this study is to provide insight into the microstructural factors that affect the flexural fatigue performance of carbon-fibre-reinforced poly(ether ehter ketone) (PEEK) composites. Specifically, the effect of the degree of crystallinity on the mechanical properties is examined at two crystallinity levels of the as-received composites (35%) and of quenched composites (10%). Higher static flexural strength and modulus as well as longer fatigue life are observed for the higher crystallinity level. By varying the loading angle with respect to the fibre direction it is shown that the crystallinity effect is not matrix dependent alone. Rather, a strong effect is evident in the fibre direction, which is attributed to the influence of the transcrystalline layer formed on the fibre surface in the high-crystallinity material. As a result, the longitudinal fatigue life at 1·7GPa of the 35% crystallinity material is three orders of magnitude higher than that of the 10% crystallinity composite.  相似文献   

14.
Multi-walled carbon nanotubes (MWCNTs) were functionalized with a carboxyl group (-COOH) to achieve better interfacial adhesions with both phases of the poly(ether ether ketone) (PEEK) and liquid crystalline polymer (LCP) in their blend. These strong interfacial interactions among the functionalized MWCNTs, PEEK and LCP improved the mechanical properties of the polymer blend. Three different weight percentages (0.6%, 1.2% and 1.8%) of acid modified CNTs were used with PEEK-LCP blend, for the preparation of nanocomposites. In PEEK-LCP blend, the ratio of PEEK and LCP was maintained as 10:6 respectively. The tensile strength and modulus of the composites were improved by 51% and 73% respectively with the incorporation of only 1.2% of MWCNT-COOH as compared to the unfilled PEEK/LCP blend. Moreover, careful studies of the molecular interaction, morphological, dynamic mechanical and thermal properties confirmed that a better miscibility between PEEK and LCP had been constituted in the presence of MWCNT-COOH. Therefore, it was found that the functionalized MWCNTs not only played the traditional role as reinforcing filler, but also performed a novel role as a compatibilizer for the PEEK/LCP blends.  相似文献   

15.
Carbon fibre-reinforced composite (PEEK/CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and electron-beam irradiation effects on the mechanical properties at low and high temperatures were studied. The flexural strength and modulus of the unirradiated PEEK/CF were almost the same as those of carbon fibre-reinforced composites with epoxide resin. The mechanical properties at room temperature were little affected by irradiation up to 180 MGy, but in the test at 77 K the strength of the specimens irradiated over 100 MGy were slightly decreased. The mechanical properties of the unirradiated specimen decreased with increasing testing temperature, but the high-temperature properties were improved by irradiation, i.e. the strength measured at 413 K for the specimen irradiated with 120 MGy almost reached the value for the unirradiated specimen measured at room temperature. It was apparent from the viscoelastic measurement that the improvement of mechanical properties at high temperature resulted from the high-temperature shift of the glass transition of the matrix PEEK caused by radiation-induced cross-linking.  相似文献   

16.
A study has been carried out on the sorption of ortho-dichlorobenzene, N,N-dimethylformamide and water by poly(ether ether ketone) (PEEK). Two types of PEEK samples have been analysed; the first in the amorphous state and the second with a high crystallinity level. The sorption and desorption curves have been determined and the effect of the solvent presence on the mechanical properties has been analysed by means of the tensile test. PEEK is affected to a different extent by the solvents studied and also by the crystallinity of the polymer. Sorption takes place only in the case of amorphous PEEK. Its effect on the mechanical properties of PEEK is explained on the basis of the two concomitant processes that are the consequence of sorption, these are: plasticization and induced crystallization.  相似文献   

17.
聚醚醚酮改性研究进展   总被引:1,自引:0,他引:1  
聚醚醚酮(PEEK)作为一种新型高性能热塑性工程塑料,在许多工程领域有着广泛的应用.采用不同手段增强PEEK,改善其加工性能和力学性能、热性能、摩擦学性能,有利于降低材料成本和进一步拓展应用范围.本文从纤维增强PEEK、颗粒填充PEEK、PEEK表面改性、与聚合物共混等方面综述了PEEK改性研究的进展情况.  相似文献   

18.
The phase behaviour and the mechanical properties of binary blends composed of poly(ether ether ketone) and poly(ether sulphone) have been studied both in the amorphous state and after crystallization of poly(ether ether ketone).Differential scanning calorimetry and dynamical mechanical analysis clearly show the existence of phase separation in the blends. Density measurements confirm the absence of strong interactions between the blend components, as well as the slight effect of PES on the crystallization of PEEK.The mechanical properties of the quenched, amorphous blends remain surprisingly good in spite of the observed immiscibility, however, slowly cooled, crystalline blends appear as brittle materials.  相似文献   

19.
以碳纤维(CF)作填料,制备了CF/聚乳酸(CF/PLA)复合材料,CF的质量比(CF∶PLA)为1%、3%、5%、10%和15%。研究了PLA及CF/PLA复合材料的结晶性能和流变特性。结果表明,质量比≤3%时,CF在基体中起到了异相成核的作用,提高了PLA的结晶性能,XRD衍射峰强度增强,CF/PLA复合材料结晶温度和结晶度分别提高到112.5℃和30.7%,流变特性与纯PLA相似。CF的质量比增加到5%时,达到"渗流阈值",黏度激增,限制了分子链段的自由运动,导致CF/PLA复合材料结晶性能下降。CF质量比为15%时,CF/PLA复合材料结晶温度降低至93.1℃,结晶度只有2.5%。  相似文献   

20.
Polyetheretherketone (PEEK) composites reinforced with carbon fibers (CFs) and nano-ZrO2 particles were prepared by incorporating nanoparticles into PEEK/CF composites via twin-screw extrusion. The effects of nanoparticles on the mechanical and wear properties of the PEEK/CF composites were studied. The results showed that the incorporation of nano-ZrO2 particles with carbon fiber could effectively enhance the tensile properties of the composites. The tensile strength and Young’s modulus of the composites increased with the increasing nano-ZrO2 content. The enhancement effect of the particle was more significant in the hybrid reinforced composites. The compounding of the two fillers also remarkably improved the wear resistance of the composites under water condition especially under high pressures. It was revealed that the excellent wear resistance of the PEEK/CF/ZrO2 composites was due to a synergy effect between the nano-ZrO2 particles and CF. CF carried the majority of load during sliding process and prevented severe wear to the matrix. The incorporation of nano-ZrO2 effectively inhibited the CF failures through reducing the stress concentration on the carbon fibers interface and the shear stress between two sliding surfaces. It was also indicated that the wear rates of the hybrid composites decreased with the increasing applied load and sliding distance under water lubrication. And low friction coefficient and low wear rate could be achieved at high sliding velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号