共查询到19条相似文献,搜索用时 46 毫秒
1.
更优的快速频繁模式树生成算法 总被引:1,自引:1,他引:1
频繁模式增长算法是一种不产生候选频繁项集的关联规则挖掘算法.利用哈希表来存储数据库中事务信息,可以减少对数据库的扫描次数,从而得到一种更优的快速频繁模式树生成算法,即OFP-tree算法.举例说明了该算法的执行过程并对该算法进行了分析和改进,最后阐述了该算法相对于传统频繁模式树生成算法的优越性. 相似文献
2.
提出了一种基干改进的B 树结构及一种新的数据挖掘算法,HB-Minc,该算法通过构造哈希函数,获得B 树的关键字,并在B 树的叶子结点上构建链表结构,记录卡H关关键字的项集及频数,这样在无需产生巨大的候选项集的情况下,挖掘出频繁模式,且具有较高的时间效率。 相似文献
3.
基于哈希链结构的频繁模式挖掘 总被引:5,自引:0,他引:5
研究工作者已经提出了一些频繁模式的挖掘算法,然而,已经提出的各种算法在不同的挖掘条件下,仍然存在一些不足之处。该文提出了一种改进的哈希链地址结构及一种新的数据挖掘算法,HCS-Mine,该算法采用哈希链结构,无需产生巨大的候选项集,且简单高效。 相似文献
4.
传统的关联规则挖掘研究事务中所包含的项与项之间的关联性,而负关联规则挖掘不仅要考虑事务中包含的项,还要考虑事务中不包含的项。给出了完全负关联规则的定义,提出一种基于树的算法Free-PNP,通过此算法挖掘数据库中的负频繁模式,继而得到所要挖掘的完全负关联规则。通过实验验证了算法的有效性。 相似文献
5.
通分析FP-growth算法中包含的冗余操作,引入数据结构FP参考树/表,改变FPgrowth算法中条件模式基的存储和生成方式,提出了新的FPRSG算法,高效地解决了频繁模式挖掘问题。理论分析与实验结果表明,FPRSG算法优于FPgrowth算法。 相似文献
6.
基于FP-tree的最大频繁模式挖掘算法 总被引:11,自引:0,他引:11
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。 相似文献
7.
在所有数据挖掘任务中,关联规则挖掘是一种非常重要的挖掘任务。而频繁模式挖掘是关联规则挖掘的关键步骤。其中,基于树搜索方式的挖掘方法是频繁模式挖掘的主要方法。本文综述了该方法所使用的搜索空间树、搜索方式和剪枝技术,对开发基于树搜索方式的频繁模式挖掘算法具有重要意义。 相似文献
8.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。 相似文献
9.
10.
频繁项集挖掘中的两种哈希树构建方法 总被引:1,自引:0,他引:1
1 引言从大型数据库中发现频繁项集/模式的研究作为关联规则、序贯模式、因果关系、最大模式、多维模式等挖掘问题的核心,已经成为近年数据挖掘领域的研究热点,并有不少有效的挖掘算法被提出。在这些挖掘算法中,它们大多数都采用了类似于Apriori算法的方法进行频繁项集的挖掘与更新。类Apriori算法的共同特点是:为了找出库中所有包含k(k>1)个项的频繁k-项集,首先产生包含频 相似文献
11.
针对FP-Growth算法在构建FP-tree过程中需要对事务数据库扫描两次,同时在利用FP-tree挖掘频繁项集过程中产生大量条件模式基和条件模式树的问题,提出一种改进的FP-Growth算法。该算法只需扫描一次事务数据库,就能构建一棵无相同节点的新的FP-tree;弃用项头表,新增与新的FP-tree关联的节点表,将构建新的FP-tree过程中"多余"的项信息存入节点表;利用新的FP-tree和节点表挖掘频繁项集。实验结果表明了该算法的可行性和有效性,其提高了数据挖掘的效率。 相似文献
12.
Guimei Liu Hongjun Lu Wenwu Lou Yabo Xu Jeffrey Xu Yu 《Data mining and knowledge discovery》2004,9(3):249-274
Mining frequent patterns, including mining frequent closed patterns or maximal patterns, is a fundamental and important problem in data mining area. Many algorithms adopt the pattern growth approach, which is shown to be superior to the candidate generate-and-test approach, especially when long patterns exist in the datasets. In this paper, we identify the key factors that influence the performance of the pattern growth approach, and optimize them to further improve the performance. Our algorithm uses a simple while compact data structure—ascending frequency ordered prefix-tree (AFOPT) to store the conditional databases, in which we use arrays to store single branches to further save space. The AFOPT structure is traversed in top-down depth-first order. Our analysis and experiment results show that the combination of the top-down traversal strategy and the ascending frequency order achieves significant performance improvement over previous works. 相似文献
13.
针对FP-Growth算法中频繁模式树的遍历低效问题,提出了一种无项头表的频繁模式增长算法。该算法利用递归回溯的方式遍历频繁模式树以求取条件模式基,解决了对同一树路径多次重复遍历的问题。从理论分析和实际挖掘能力两方面,将新算法与FP-Growth算法进行了对比。结果表明,新算法有效减少了条件模式基的搜索开销,使频繁模式挖掘的效率提高了2~5倍,在时间和空间性能上均优于FP-Growth算法。将该算法应用于通信告警关联规则挖掘,较快地挖掘出了关联规则结果,且正确规则的覆盖率达到了83.3%。 相似文献
14.
15.
频繁模式挖掘进展及典型应用 总被引:1,自引:0,他引:1
对近年来频繁模式的挖掘进行了总结。首先对有代表性的挖掘算法从算法思想、关键技术、算法的优缺点进行了分析概括,此后列举了一些典型频繁模式及关联规则的领域应用。综述内容的选择主要基于某一个研究后续被关注程度,组织过程中力争将相关研究进行归类,以给出其发展概貌。上述工作可以为频繁模式挖掘及关联规则的研究提供有益的参考。 相似文献
16.
17.
一种含负项目的一般化关联规则挖掘算法 总被引:3,自引:0,他引:3
传统的关联规则是形如A→B反映正项目之间关联关系的蕴涵式,它无法反映出数据之间隐藏的负关联关系.在表达式中引入负项目,将这种传统的关联规则扩展成包含正、负项目的一般化关联规则.介绍了一般化关联规则的概念及其相关性质定理,并加以证明,提出了一种基于频繁模式树的挖掘混合正、负项目的一般化关联规则的MGPNFP算法,对其性能进行了分析,并比较了MGPNFP算法比现有的挖掘含负项目关联规则的算法所具有的优势. 相似文献
18.
为了进一步提高在Spark平台上的频繁模式增长(FP-Growth)算法执行效率,提出一种新的基于Spark的并行FP-Growth算法——BFPG。首先,从频繁模式树(FP-Tree)规模大小和分区计算量对F-List分组策略进行改进,保证每个分区负载总和近似相等;然后,通过创建列表P-List对数据集划分策略进行优化,减少遍历次数,降低时间复杂度。实验结果表明,BFPG算法提高了并行FP-Growth算法挖掘效率,且算法具有良好的扩展性。 相似文献
19.
频繁项目集的生成是关联规则挖掘中的关键问题 .提出基于 Hash树的频繁项目集生成新方法 ,探讨了 Hash树中候选项目集的数据组织与建立算法 ,提出了利用 Hash树计算候选项目集支持数的算法 ,并用 Java语言实现了该算法 ,最后通过实验验证了利用 Hash树生成频繁项目集的有效性 相似文献