共查询到20条相似文献,搜索用时 59 毫秒
1.
更优的快速频繁模式树生成算法 总被引:1,自引:1,他引:1
频繁模式增长算法是一种不产生候选频繁项集的关联规则挖掘算法.利用哈希表来存储数据库中事务信息,可以减少对数据库的扫描次数,从而得到一种更优的快速频繁模式树生成算法,即OFP-tree算法.举例说明了该算法的执行过程并对该算法进行了分析和改进,最后阐述了该算法相对于传统频繁模式树生成算法的优越性. 相似文献
2.
基于哈希链结构的频繁模式挖掘 总被引:5,自引:0,他引:5
研究工作者已经提出了一些频繁模式的挖掘算法,然而,已经提出的各种算法在不同的挖掘条件下,仍然存在一些不足之处。该文提出了一种改进的哈希链地址结构及一种新的数据挖掘算法,HCS-Mine,该算法采用哈希链结构,无需产生巨大的候选项集,且简单高效。 相似文献
3.
提出了一种基干改进的B 树结构及一种新的数据挖掘算法,HB-Minc,该算法通过构造哈希函数,获得B 树的关键字,并在B 树的叶子结点上构建链表结构,记录卡H关关键字的项集及频数,这样在无需产生巨大的候选项集的情况下,挖掘出频繁模式,且具有较高的时间效率。 相似文献
4.
传统的关联规则挖掘研究事务中所包含的项与项之间的关联性,而负关联规则挖掘不仅要考虑事务中包含的项,还要考虑事务中不包含的项。给出了完全负关联规则的定义,提出一种基于树的算法Free-PNP,通过此算法挖掘数据库中的负频繁模式,继而得到所要挖掘的完全负关联规则。通过实验验证了算法的有效性。 相似文献
5.
通分析FP-growth算法中包含的冗余操作,引入数据结构FP参考树/表,改变FPgrowth算法中条件模式基的存储和生成方式,提出了新的FPRSG算法,高效地解决了频繁模式挖掘问题。理论分析与实验结果表明,FPRSG算法优于FPgrowth算法。 相似文献
6.
基于FP-tree的最大频繁模式挖掘算法 总被引:11,自引:0,他引:11
在FP-tree结构的基础上提出了最大频繁模式挖掘算法FP-Max。算法FP-Max只需要两次数据库扫描,挖掘过程不会产生候选项集。实验表明.算法FP-Max在挖掘密集型数据集方面是高效的。 相似文献
7.
在所有数据挖掘任务中,关联规则挖掘是一种非常重要的挖掘任务。而频繁模式挖掘是关联规则挖掘的关键步骤。其中,基于树搜索方式的挖掘方法是频繁模式挖掘的主要方法。本文综述了该方法所使用的搜索空间树、搜索方式和剪枝技术,对开发基于树搜索方式的频繁模式挖掘算法具有重要意义。 相似文献
8.
在分析研究具有代表性的关联知识挖掘算法的基础上,提出了挖掘频繁模式的一个新的数据库存储结构AFP-树,并在此结构上设计了一个频繁模式挖掘算法。理论研究已经阐明了AFP-树的有效性和相关算法的高效性。 相似文献
9.
10.
频繁项集挖掘中的两种哈希树构建方法 总被引:1,自引:0,他引:1
1 引言从大型数据库中发现频繁项集/模式的研究作为关联规则、序贯模式、因果关系、最大模式、多维模式等挖掘问题的核心,已经成为近年数据挖掘领域的研究热点,并有不少有效的挖掘算法被提出。在这些挖掘算法中,它们大多数都采用了类似于Apriori算法的方法进行频繁项集的挖掘与更新。类Apriori算法的共同特点是:为了找出库中所有包含k(k>1)个项的频繁k-项集,首先产生包含频 相似文献
11.
对近年来频繁模式的挖掘进行了总结。首先对有代表性的挖掘算法从算法思想、关键技术、算法的优缺点进行了分析概括,此后列举了一些典型频繁模式及关联规则的领域应用。综述内容的选择主要基于某一个研究后续被关注程度,组织过程中力争将相关研究进行归类,以给出其发展概貌。上述工作可以为频繁模式挖掘及关联规则的研究提供有益的参考。 相似文献
12.
关联规则挖掘是数据挖掘重要研究课题,大数据处理对关联规则挖掘算法效率提出了更高要求,而关联规则挖掘的最耗时的步骤是频繁模式挖掘。针对当前频繁模式挖掘算法效率不高的问题,结合Apriori算法和FP-growth算法,提出一种基于事务映射区间求交的频繁模式挖掘算法IITM(interval interaction and transaction mapping),只需扫描数据集两次来生成FP树,然后扫描FP树将每个项的ID映射到区间中,通过区间求交来进行模式增长。该算法解决了Apriori算法需要多次扫描数据集,FP-growth算法需要迭代地生成条件FP树来进行模式增长而带来的效率下降的问题。在真实数据集上的实验显示,在不同的支持度下IITM算法都要要优于Apriori、FP-growth以及PIETM算法。 相似文献
13.
针对FP-Growth算法在构建FP-tree过程中需要对事务数据库扫描两次,同时在利用FP-tree挖掘频繁项集过程中产生大量条件模式基和条件模式树的问题,提出一种改进的FP-Growth算法。该算法只需扫描一次事务数据库,就能构建一棵无相同节点的新的FP-tree;弃用项头表,新增与新的FP-tree关联的节点表,将构建新的FP-tree过程中"多余"的项信息存入节点表;利用新的FP-tree和节点表挖掘频繁项集。实验结果表明了该算法的可行性和有效性,其提高了数据挖掘的效率。 相似文献
14.
模式树是目前频繁项集挖掘最常用的数据结构,使用模式树可以有效地将数据库压缩于内存,并在内存中完成对频繁项集的挖掘。为了进一步提高频繁项集挖掘算法的可扩展性,本文对模式树进行了细致的研究,在此基础上提出了一种挖掘频繁项集的新算法,FP-DFS算法。该算法通过对模式树的各种操作简化了对频繁项集的搜索过程。实验表明,该算法对于频繁项集挖掘具有比较高的效率。 相似文献
15.
在频繁模式挖掘过程中能够动态改变约束的算法比较少.提出了一种基于约束的频繁模式挖掘算法MCFP.MCFP首先按照约束的性质来建立频繁模式树,并且只需扫描一遍数据库,然后建立每个项的条件树,挖掘以该项为前缀的最大频繁模式,并用最大模式树来存储,最后根据最大模式来找出所有支持度明确的频繁模式.MCFP算法允许用户在挖掘频繁模式过程中动态地改变约束.实验表明,该算法与iCFP算法相比是很有效的. 相似文献
16.
关联规则挖掘是数据挖掘中的一个重要研究方向,用于发现项集之间的关联性。FP-growth算法通过构造FP-tree产生频繁集,由于其不生成候选集从而大大降低了搜索开销,其缺点是占用大量的内存空间。基于FP-growth的算法思想,提出基于FS-tree(频繁1-项子树)的频繁模式挖掘算法,通过将FP-tree拆分为多棵FS-tree,使算法的空间复杂度明显减小。实验表明,该算法是有效的。 相似文献
17.
18.
从数据集中挖掘数据间的相互关系及其关联规则是数据挖掘研究领域的核心内容之一,为了挖掘实体表现出的数据特征与实体具备因素间的关系,提出了一种挖掘方法.先采用聚类分析的方法对实体的数据进行了聚类,再通过关联分析的方法分析聚类簇中实体的因素,继而得出实体具备的因素与实体数据间的相互影响及其关联规则.通过该方法分析了学生具有的因素对学生学习成绩的影响,分析结果表明了方法的可行性. 相似文献
19.
对于频繁项集挖掘,采用一种FP-数组技术来减少FP-tree的遍历时间,减少数据集的扫描次数,在此基础上提出了一种基于FP-tree进行频繁项集挖掘的FP-growth+算法,提高了算法的效率。最后的实验证明了该算法的有效性。 相似文献
20.
基于FP-tree的最大频繁项目集挖掘算法 总被引:1,自引:0,他引:1
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法. 相似文献