首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of casting speed and alloy composition on structure formation and hot tearing during direct-chill (DC) casting of 200-mm round billets from binary Al-Cu alloys are studied. It is experimentally shown that the grain structure, including the occurrence of coarse grains in the central part of the billet, is strongly affected by the casting speed and alloy composition, while the dendritic arm spacing is mostly dependent on the casting speed. The hot cracking pattern reveals the maximum hot-tearing susceptibility in the range of low-copper alloys (1 to 1.5 pct) and at high casting speeds (180 to 200 mm/min). The clear correlation between the amount of nonequilibrium eutectics (representing the reserve of liquid phase in the last stage of solidification) and hot tearing is demonstrated. A casting speed-copper concentration-hot-tearing susceptibility chart is constructed experimentally for real-scale DC casting. Computed dimensions of the solidification region in the billet are used to explain the experimentally observed structure patterns and hot cracking. Thermomechanical finite-element simulation of the solidifying billet was used as a tool for testing the applicability to DC casting of several hot-tearing criteria based on different principles. The results are compared to the experimentally observed hot tearing. It is noted that hot-tearing criteria that account for the dynamics of the process, e.g., strain rate, actual stress-strain situation, feeding rate, and melt flow, can be successfully used for the qualitative prediction of hot tearing.  相似文献   

2.
Al-Cu alloys (such as A206) offer high strength and high fracture toughness at both room and elevated temperatures. However, their widespread applications are limited because of their high susceptibility to hot tearing. This article presents a nanotechnology approach to enhance hot-tearing resistance for A206. Specifically, γ-Al2Onanoparticles were used, and their effects on the hot-tearing resistance of the as-cast Al-4.5Cu alloy (A206) were investigated. While it is well known that grain refinement can improve the hot-tearing resistance of cast Al alloys, the current study demonstrated that nanoparticles can be much more effective in the case of A206. The hot-tearing susceptibilities (HTSs) of A206 alloy and its Al2Onanocomposite were evaluated by constrained rod casting (CRC) with a steel mold. Monolithic A206 and M206 (the Ti-free version of A206) alloys with the B contents of 20, 40, and 300 ppm from an Al-5Ti-1B master alloy addition were also cast under the same conditions for comparison. The results showed that with an addition of 1 wt pct γ-Al2Onanoparticles, the extent of hot tearing in A206 alloys was markedly reduced to nearly that of A356, an Al-Si alloy highly resistant to hot tearing. As compared with grain-refined A206 or M206, the hot-tearing resistance of the nanocomposites was significantly better, even though the grain size was not reduced as much. Microstructural analysis suggested that γ-Al2Onanoparticles modified the solidification microstructure of the eutectic of θ-Al2Cu and α-Al, as well as refined primary grains, resulting in the enhancement of the hot-tearing resistance of A206 to a level similar to that of A356 alloy.  相似文献   

3.
The modern concepts of the causes of hot tearing are considered and the influence of the solid fraction growth rate of an alloy is studied. The hot-tearing susceptibility (HTS) of binary Al–(5–73) wt % Zn alloys is investigated using backbone tests. The HTS is found to be maximal at ~25 wt % Zn. This maximum cannot be explained by a change in the effective solidification range, since this range of the alloys decreases monotonically with increasing zinc content. The calculations of nonequilibrium solidification by the Scheil–Gulliver model and the solid fraction growth rate of the alloys under study demonstrate that the increase in the HTS induced by an increase in the zinc content from 5 to 25 wt % is related to the decrease in the solid fraction growth rate at the final stages of solidification. The decrease in the HTS at >25 wt % Zn is associated with an increase in the fraction of eutectic in the alloys (the solid fraction growth rate during the eutectic reaction tends toward infinity) and with a change in its morphology.  相似文献   

4.
The susceptibility of Mg-Al-Sr alloys to hot tearing during permanent mold casting was investigated using constrained rod casting (CRC) in a steel mold. The alloys included Mg-xAl-1.5Sr and Mg-xAl-3Sr, where x = 4, 6, or 8 wt pct. The hot-tearing susceptibility (HTS) was determined based on the widths and locations of the cracks in the rods. With the Mg-xAl-1.5 Sr alloys, the HTS decreased significantly with increasing Al content. With the Mg-xAl-3Sr alloys, the trend was similar but not as significant. At the same Al content, the HTS was significantly lower at 3 wt pct Sr than at 1.5 wt pct Sr. To help understand the HTS of these alloys, the solidification path and phase fractions were calculated for each alloy. The HTS was found to increase with increasing fraction solid at the end of primary solidification.  相似文献   

5.
Two-phase modeling of mushy zone parameters associated with hot tearing   总被引:1,自引:0,他引:1  
A two-phase continuum model for an isotropic mushy zone is presented. The model is based upon the general volume-averaged conservation equations, and quantities associated with hot tearing are included, i.e., after-feeding of the liquid melt due to solidification shrinkage is taken into account as well as thermally induced deformation of the solid phase. The model is implemented numerically for a one-dimensional model problem with some similarities to the aluminium direct chill (DC) casting process. The variation of some key parameters that are known to influence the hot-tearing tendency is then studied. The results indicate that both liquid pressure drop due to feeding difficulties and tensile stress caused by thermal contraction of the solid phase are necessary for the formation of hot tears. Based upon results from the one-dimensional model, it is furthermore concluded that none of the hot-tearing criteria suggested in the literature are able to predict the variation in hot-tearing susceptibility resulting from a variation in all of the following parameters: solidification interval, cooling contraction of the solid phase, casting speed, and liquid fraction at coherency.  相似文献   

6.
Aluminum-copper (Al-Cu) and aluminum-silicon-copper (Al-Si-Cu) alloys are among the most common aluminum casting alloys. Aluminum alloy B206 is a relatively new Al-Cu alloy with high strength and ductility at room and elevated temperatures, while A319 is an Al-Si-Cu alloy with good strength and excellent wear resistance. However, despite their advantages, when these alloys are cast via the permanent mold casting (PMC) process, they show a high susceptibility to hot tearing. Grain refinement has shown promise as a means to reducing hot tears in aluminum alloys. In this study, Ti-B grain refiner was used to investigate the effect of grain refinement on hot tearing in B206 and A319 aluminum alloys during permanent mold casting. The results suggest that Ti-B additions significantly reduced hot tearing in B206 and A319. Grain sizes were also seen to reduce significantly in both alloys with addition of Ti-B grain refiner. However, Ti-B grain refiner had a diverse effect on alloy grain morphology, as a dendritic morphology in B206 was transformed to a more globular one, while in A319, the grain structure remained dendritic.  相似文献   

7.
The present investigation deals with the hot tearing susceptibility of A206, A518, and A713 alloys. The hot tearing tests of the mentioned alloys were conducted at three different pouring temperatures using sand mold casting. Metallic cores designed to facilitate constrained radial contraction of the aforementioned alloys were used for casting. Macroscopic cracks were found in all the samples except in A518 alloy. It was observed that pouring temperatural and grain size have significant effect on crack susceptibility. Among the investigated alloys, A713 was found to be extremely prone to hot tearing. The microstructure characteristics of the alloys were studied using optical and scanning electron microscopy. Relationships between the pouring temperature, grain size and crack lengths of the alloys were also established.  相似文献   

8.
This work investigates the mechanical behavior of two aluminum alloys in the mushy state, the alloy AA6056 and an alloy based on mixing AA6056 and AA4047. These alloys have been studied to give insight into the susceptibility to hot tearing, which occurs during laser welding of AA6056 with 4047 filler wire. Two types of isothermal tensile tests have been conducted: (1) tests during partial remelting and (2) tests after partial solidification at a high cooling rate. Results show that the maximum tensile stress increases with increasing solid volume fraction. Both materials exhibit visco-plastic behavior for solid fractions in the range 0.9 to 0.99, except for a critical solid fraction of 0.97, where the semisolid material also shows minimum ductility. The stress levels observed for the remelting experiments are larger than those found for partial solidification experiments at the same solid fraction due to the influence of the microstructure. The influence of temperature and strain rate on the maximum stress is described by using a constitutive law that takes into account the fraction of grain boundaries wetted by the liquid.  相似文献   

9.
10.
针对K424精密铸造增压涡轮叶片出现的热裂问题,采用组织观察和计算模拟的方法,分析增压涡轮用K424合金特性以及涡轮叶片铸造中出现热裂的原因,并对比K418合金提出合金热裂倾向性的影响因素以及减少热裂的建议.结果表明,铸造增压涡轮热裂倾向性与合金特性及铸件特性等有关.K424合金中Al和Ti元素含量较高,导致合金中共晶组织含量多且尺寸大,与K418合金相比,热裂倾向性较大;另一方面,由于铸件叶片位置厚度小且曲率变化大,易形成应力集中,导致热裂.为减小热裂倾向性,需控制K424合金中Al和Ti元素含量并选择合理的工艺参数.   相似文献   

11.
Hot tearing characteristics of Mg-xGd (x = 1, 2, 5 and 10 wt pct) binary alloys have been studied in a constrained rod casting apparatus attached with a load cell and data acquisition system. The onset temperature of the hot tearing was identified from the force drop in the force–temperature–time curve, and the corresponding onset solid fraction was obtained from the fraction solid–temperature curve derived using Scheil non-equilibrium solidification model. The results indicate that the onset solid fraction for the hot tear decreased as the Gd content increased. The susceptibility defined by the total tear volume measurements by the X-ray micro-tomography technique indicates that the susceptibility increased with increase in Gd content to reach a maximum at 2 pct and then reduced with further increase in Gd to reach a minimum with 10 pct Gd. The high susceptibility observed in Mg-2 pct Gd was attributed to its cellular or columnar grain structure, which facilitated easy tear propagation, high strain at the onset with little amount of remaining liquid. In contrast, the lowest susceptibility of Mg-10 pct Gd was related to its equiaxed grain structure, which effectively accommodated the strain during solidification by reorienting themselves and the ability of the Gd-rich liquid to partially or completely refill the tear at the end of solidification. The results also indicate that the increase in mold temperature [723 K (450 °C)] significantly reduced the total crack volume and hence reduced the susceptibility, which was attributed to the increase in the hot spot size and lesser total stain at the hot spot region.  相似文献   

12.
Cast alloys with wide solidification ranges are prone to hot tearing. This study deals with prediction of hot tearing location and its intensity by computer simulation. The simulation was performed at different pouring temperatures on A206 aluminum alloy. As superheat increases, the critical fraction solid time increases which means the alloy is more susceptible to hot tearing. These theoretical predictions are in complete accordance with experimental results.  相似文献   

13.
A volume-averaged two-phase model addressing the main transport phenomena associated with hot tearing in an isotropic mushy zone during solidification of metallic alloys has recently been presented elsewhere along with a new hot tearing criterion addressing both inadequate melt feeding and excessive deformation at relatively high solid fractions. The viscoplastic deformation in the mushy zone is addressed by a model in which the coherent mush is considered as a porous medium saturated with liquid. The thermal straining of the mush is accounted for by a recently developed model taking into account that there is no thermal strain in the mushy zone at low solid fractions because the dendrites then are free to move in the liquid, and that the thermal strain in the mushy zone tends toward the thermal strain in the fully solidified material when the solid fraction tends toward one. In the present work, the authors determined how variations in the parameters of the constitutive equation for thermal strain influence the hot tearing susceptibility calculated by the criterion. It turns out that varying the parameters in this equation has a signiicant effect on both liquid pressure drop and viscoplastic strain, which are key parameters in the hot tearing criterion. However, changing the parameters in this constitutive equation will result in changes in the viscoplastic strain and the liquid pressure drop that have opposite effects on the hot tearing susceptibility. The net effect on the hot tearing susceptibility is thus small.  相似文献   

14.
Effect of Zr and B on castability of Ni-based superalloy IN792   总被引:1,自引:0,他引:1  
The effect of Zr and B on hot tearing susceptibility of the Ni-based superalloy IN792 during directional solidification (DS) was studied. The Zr and B concentrations in the experimental alloys ranged from 0 to ∼550 ppm. The results indicate that Zr or B does not influence the castability when added individually. However, when both Zr and B are present in the alloy, high hot tearing susceptibility was found, the effect being particularly strong if Zr concentration was high. The castability results cannot be explained by simple solidification characteristics such as total freezing range (obtained from differential scanning calorimetry (DSC)) or by the amount of eutectic liquid (derived from the fraction of interdendritic γ/γ′ obtained from quantitative metallography). However, the present results can be interpreted in terms of formation of continuous films of liquid at grain boundaries (GBs) during the final stages of solidification rather than enclosed pockets. Such thin films of liquid may reduce GB cohesion and promote hot tearing.  相似文献   

15.
Hot tearing is one of the most serious defects encountered in aluminum alloy castings. During solidification of aluminum alloys, the localized region of solidified alloys is submitted to thermally induced strains that can be lead to severe solidification defects, such as shrinkage porosity and hot tearing. The formation of hot tearing is related to the development of local stress or thermal strains. It is such a complicated phenomenon that a full understanding has not been achieved yet, though it has been extensively investigated for decades. Therefore, in order to further understand this complicated phenomenon and establish the mathematical models of hot tearing, it is necessary to obtain the accurate mechanical property data in the mushy zone of alloys. In response to the demand for this purpose, a newly experimental apparatus has been used to perform tensile measurements of aluminum alloys during solidification. Therefore, the tensile properties measurements of the mushy zone in A356 alloy have been carried out. The fracture surfaces and microstructures of the hot tearing samples have been examined by optical microscopy and scanning electron microscopy. The results show that the yield stresses are increasing with the increase of the solid fraction. When the solid fraction is close to one, they will keep stable to a certain value. According to the analysis, the yield stresses will change with the evolution of solid fraction, which is in accordance with the Boltzmann Function.  相似文献   

16.
A new criterion for prediction of hot tearing susceptibility of cast alloys is suggested which takes into account the effects of both important mechanical and metallurgical factors and is believed to be less sensitive to the presence of volume defects such as bifilms and inclusions. The criterion was validated by studying the hot tearing tendency of Al-Cu alloy. In conformity with the experimental results, the new criterion predicted reduction of hot tearing tendency with increasing the copper content.  相似文献   

17.
Hot tearing during solidification processes has been deeply investigated in past and recent years through testing, modeling, and development of a number of macroscopic hot tearing criteria. The objective is predicting the crack occurrence during industrial solidification processes, which, in the steel production, are mainly ingot and continuous casting. The present work is inspired by the criterion proposed in the work of Bellet et al.[1] called CBC criterion, from which the methodological approach and experimental data used for calibration, related to nine carbon steels, have been derived. The proposed hot tearing criterion adopts as parameters: primary and secondary arm spacing, the mechanical resistance near the solidus temperature, the solidification parameters G (gradient) and v (dendrite tip velocity), the brittle range extension in the dendritic front and the temperature of formation of manganese sulfides. The new formulation is an attempt to substitute to brittle temperature range and steel content, appearing in the CBC criterion, the dendritic structure characteristics, in the aim of: (a) moving toward a generalized expression of the cracking index applicable to different steel classes; (b) introducing the dependence of the crack susceptibility on the cooling conditions. The agreement of the new hot tearing index values with the experimental ones is of the same kind as that of the CBC criterion, indicating that the parameters and the dependences adopted in the new criterion make a sense. Further study and experimental work are needed to assess the influence of the microstructure morphology on the hot cracking sensitivity and to check the suitability of the approach to a wider range of steel compositions.  相似文献   

18.
Li  Y.  Gao  X.  Zhang  Z. R.  Xiao  W. L.  Li  H. X.  Du  Q.  Katgerman  L.  Zhang  J. S.  Zhuang  L. Z. 《Metallurgical and Materials Transactions A》2017,48(10):4744-4754

The effect of Zn addition on the hot tearing susceptibilities of non-refined Al-xZn-2Mg-2Cu (x = 2-12 wt pct) alloys was investigated via direct crack observations and load response measurements. The obtained experimental results were compared with the predictions made using a modified Rappaz–Drezet–Gremaud (RDG) hot tearing model. Both the minimum crack width and load at the non-equilibrium solidus (NES) temperature (which served as a good indicator of hot tearing response) were observed at a Zn concentration of approximately 4 wt pct, and the formation of cracks was highly correlated with the predictions made via the modified RDG hot tearing model (although the obtained relationship critically depended on the magnitude of fraction solid at which solid coalescence was expected to occur). Furthermore, it was confirmed from the load development pattern that the addition of Zn into the matrix of Al-xZn-2Mg-2Cu alloys promoted the formation of coalesced networks, which decreased their corresponding coalescence fraction solids.

  相似文献   

19.
Effect of Rare Earths on Hot Cracking Resistant Property of Mg-Al Alloys   总被引:2,自引:0,他引:2  
The effect of rare earths (RE) ranging from 0.1% to 1.2%(mass fraction) on hot cracking resistant property of Mg-Al alloys was investigated. The results show that hot cracking resistant property of Mg-Al alloys remarkably declines with an increase of RE addition. The causes of the decline are as follows: First, grain coarsening of Mg-Al alloys caused by RE addition reduces the fracture strain required for hot crack initiation. Second, RE reduces the eutectic microstructure of Mg- Al alloys, and as a result, shortens the time that the feeding channel remains open, making it difficult to feed the alloy. Furthermore, RE elevates the eutectic reaction temperature, which leads to the decrease in the strength of the interdendritic liquid film at the late stage of solidification. Third, when a-Mg dendrites form continuous skeletons, the interdendritic Al11 RE3 phase tends to block the feeding channels and increases the difficulty of feeding. Last, the shrinkage ratio discrepancy between Al11RE3 phases and α-Mg matrix is prone to cause shrinkage stress and promote hot crack initiation.  相似文献   

20.
Ternary Mg−Al−Ca alloys are the base of a few new creep-resistant, lightweight Mg alloys for automobiles. Hot tearing in Mg−xAl−yCa alloys was studied, including Mg−4Al−0.5Ca, Mg−4Al−1.5Ca. Mg−4Al−2.5Ca, Mg−4Al−3.5Ca, Mg−5Al−2.5Ca, and Mg−6Al−2.5Ca, by constrained rod casting (CRC) in a steel mold—with a movable pouring cup to keep solidification therein from interfering with the rising tension in the rods. The hot tearing susceptibility, based on measured crack widths and crack locations, decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing by monitoring the tension in the rod during casting and the temperature near the cracking site. It was further improved by reducing the rod diameter to detect hot tearing earlier, at a higher temperature, and with a clear peak in the load curve. To further understand the hot tearing susceptibility of these alloys, the secondary phases, eutectic content, solidification path, and freezing range were examined. Alloy Mg−4Al−0.5Ca had the widest freezing range and the lowest eutectic content and was most susceptible to hot tearing, while alloys Mg−4Al−3.5Ca and Mg−6Al−2.5Ca were the opposite. Mg−4Al−0.5Ca had the widest freezing range (183 °C) because its solidification path led to the formation of Mg17Al12 from the liquid at a very low temperature (440°C). The application of the results to die casting was discussed. G. CAO, formerly Graduate Student, Department of Materials Science and Engineering, University of Wisconsin-Madison  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号