首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The tension and compression deformation behavior of extruded magnesium-1 wt pct manganese alloys with nominally 0.3 wt pct (MN10) and 1 wt pct neodymium (MN11) was studied over the temperature range of 298 K to 523 K (25 °C to 250 °C). Nd additions to Mg alloys tend to reduce the strong basal texture exhibited by conventional wrought Mg alloys and this work was intended to study the effect of Nd on the deformation behavior of Mg alloys. In situ tensile and compressive experiments were performed using a scanning electron microscopy, and electron backscatter diffraction was performed both before and after the deformation. A slip trace analysis technique was used to identify the distribution of the deformation systems as a function of strain, and based on this analysis and the texture of the undeformed samples, the critical resolved shear stress ratios between the deformation systems were estimated. In the case of MN11, the deformation behavior under tension at all temperatures was dominated by slip, while in compression, extension twinning was the major deformation mode. In tension at 323 K (50 °C), extension twinning, basal, prismatic 〈a〉, and pyramidal 〈c + a〉 slip were active in MN11. Much less extension twinning was observed at 423 K (150 °C), while basal slip and prismatic 〈a〉 slip were dominant and presented similar relative activities. At 523 K (250 °C), twinning was not observed, and basal slip controlled the deformation. With the reduction of Nd content, less slip deformation and more twinning were observed during the tensile deformation. However, like for MN11, the extent of twinning in MN10 decreased with increasing temperature and basal slip was the primary deformation mode at elevated temperatures. Extension twinning was the major deformation mode under compression for all test temperatures in MN10 and MN11. The tensile strength decreased with increasing temperature for both alloys, where MN10 was slightly stronger than MN11 at 323 K (50 °C), which was expected to be a result of the stronger basal texture exhibited by MN10 due to its lower Nd content. However, MN11 maintained its strength more at elevated temperatures compared with MN10, and this was explained to be a result of the greater Nd content.  相似文献   

2.
Martensite reversion treatment was utilized to obtain ultrafine grain size in Fe-18Cr-12Mn-N stainless steels containing 0 to 0.44 wt pct N. This was achieved by cold rolling to 80 pct reduction followed by reversion annealing at temperatures between 973 K and 1173 K (700 °C and 900 °C) for 1 to 10seconds. The microstructural evolution was characterized using both transmission and scanning electron microscopes, and mechanical properties were evaluated using hardness and tensile tests. The steel without nitrogen had a duplex ferritic-austenitic structure and the grain size refinement remained inefficient. The finest austenitic microstructure was achieved in the steels with 0.25 and 0.36 wt pct N following annealing at 1173 K (900 °C) for 100 seconds, resulting in average grain sizes of about 0.240 ± 0.117 and 0.217 ± 0.73 µm, respectively. Nano-size Cr2N precipitates observed in the microstructure were responsible for retarding the grain growth. The reversion mechanism was found to be diffusion controlled in the N-free steel and shear controlled in the N-containing steels. Due to a low fraction of strain-induced martensite in cold rolled condition, the 0.44 wt pct N steel displayed relatively non-uniform, micron-scale grain structure after the same reversion treatment, but it still exhibited superior mechanical properties with a yield strength of 1324 MPa, tensile strength of 1467 MPa, and total elongation of 17 pct. While the high yield strength can be attributed to strengthening by nitrogen alloying, dislocation hardening, and slight grain refinement, the moderate strain-induced martensitic transformation taking place during tensile straining was responsible for enhancement in tensile strength and elongation.  相似文献   

3.
ZrB2-SiC composites were hot pressed at 2473 K (2200 °C) with graded amounts (5 to 20 wt pct) of SiC and the effect of the SiC addition on mechanical properties like hardness, fracture toughness, scratch and wear resistances, and thermal conductivity were studied. Addition of submicron-sized SiC particles in ZrBmatrices enhanced mechanical properties like hardness (15.6 to 19.1 GPa at 1 kgf), fracture toughness (2 to 3.6 MPa(m)1/2) by second phase dispersion toughening mechanism, and also improved scratch and wear resistances. Thermal conductivity of ZrB2-SiC (5 wt pct) composite was higher [121 to 93 W/m K from 373 K to 1273 K (100 °C to 1000 °C)] and decreased slowly upto 1273 K (1000 °C) in comparison to monolithic ZrBproviding better resistance to thermal fluctuation of the composite and improved service life in UHTC applications. At higher loading of SiC (15 wt pct and above), increased thermal barrier at the grain boundaries probably reduced the thermal conductivity of the composite.  相似文献   

4.
Fe-22 wt pct Mn-0.6 wt pct C twinning-induced plasticity (TWIP) steel having fully recrystallized ultrafine-grained structure was obtained through a simple thermomechanical process repeating cold rolling and annealing. The minimum average grain size of 550 nm was successfully obtained. The ultrafine-grained steel exhibited good mechanical properties superior to those previously reported in Fe-Mn-Al-Si TWIP steels, and the origin was discussed based on the difference of stacking fault energies.  相似文献   

5.
Two Mg-1 wt pct Mn alloys containing 0.5 wt pct and 1 wt pct Nd have been processed by indirect extrusion at temperatures ranging from 548 K (275 °C) to 633 K (360 °C) and speeds between 2.8 and 11 mm/s. The microstructure and the texture of the extruded bars were analyzed in order to understand the effect of the processing parameters and of the rare-earth (RE) alloying additions on the texture development. Increasing the Nd content results in weak textures in which the predominant orientations are a function of the extrusion conditions. This may be explained by the occurrence of particle pinning of grain boundaries and by the nucleation of grains with a wider range of orientations. Mechanical tests were carried out in tension and in compression in all the processed samples at 10?3 s?1 and room temperature. It was found that larger RE amounts give rise to the disappearance of the yield asymmetry and to an anomalously high activity of tensile twinning, especially at the lowest extrusion temperatures. This has been attributed to an increase of the critical resolved shear stress of basal slip due to the presence of Mg3Nd coherent and semi-coherent intermetallic prismatic plates.  相似文献   

6.
Aluminum (Al)-V master alloys have attracted attention, because they can potentially be efficient grain refiners for wrought aluminum alloys. In this paper, the microstructure and factors affecting the microstructure of Al-4 wt pct V master alloys were investigated by means of controlled melting and casting processes followed by structure examination. The results showed that the type and morphology of the V-containing phases in Al-V master alloys were strongly affected by the temperature of the melt, concentration of vanadium in solution in the melt and the cooling conditions. Two main V-containing phases, Al3V and Al10V, which have different shapes, were found in the alloys prepared by rapid solidification. The Al3V phase formed when there were both a high temperature (1273 K to 1673 K (1000 °C to 1400 °C)) and a relatively high vanadium content of 3 to 4 wt pct, while the Al10V phase formed at a low temperature (<1373 K (1100 °C)) or a low vanadium content in the range of 1 to 3 wt pct. The results also showed that the type of V-containing phase that formed in the Al-4 wt pct V master alloy was determined by the instantaneous vanadium content.  相似文献   

7.
Experiments show that the magnesium AZ31 (Mg-3 pct Al-1 pct Zn) alloy exhibits excellent superplastic properties at 623 K (350 °C) after processing by equal-channel angular pressing using a die with a channel angle of 135 deg and a range of decreasing processing temperatures from 473 K to 413 K (200 °C to 140 °C). A maximum elongation to failure of ~1200 pct was achieved in this alloy at a tensile strain rate of 1.0 × 10?4 s?1. Microstructural inspection showed evidence for cavity formation and grain growth during tensile testing with the grain growth leading to significant strain hardening. An examination of the experimental data shows that grain boundary sliding is dominant during superplastic flow. Furthermore, a comprehensive review of the present results and extensive published data for the AZ31 alloy shows the exponent of the inverse grain size is given by p ≈ 2 which is consistent with grain boundary sliding as the rate-controlling flow mechanism.  相似文献   

8.
The effect of tempering on the mechanical properties and fracture behavior of two 3 pct Co-modified 9 pct Cr steels with 2 and 3 wt pct W was examined. Both steels were ductile in tension tests and tough under impact tests in high-temperature tempered conditions. At T  923 K (650 °C), the addition of 1 wt pct W led to low toughness and pronounced embrittlement. The 9Cr2W steel was tough after low-temperature tempering up to 723 K (450 °C). At 798 K (525 °C), the decomposition of retained austenite induced the formation of discontinuous and continuous films of M23C6 carbides along boundaries in the 9Cr2W and the 9Cr3W steels, respectively, which led to tempered martensite embrittlement (TME). In the 9Cr2W steel, the discontinuous boundary films played a role of crack initiation sites, and the absorption energy was 24 J cm?2. In the 9Cr3W steel, continuous films provided a fracture path along the boundaries of prior austenite grains (PAG) and interlath boundaries in addition that caused the drop of impact energy to 6 J cm?2. Tempering at 1023 K (750 °C) completely eliminated TME by spheroidization and the growth of M23C6 carbides, and both steels exhibited high values of adsorbed energy of ≥230 J cm?2. The addition of 1 wt pct W extended the temperature domain of TME up to 923 K (650 °C) through the formation of W segregations at boundaries that hindered the spheroidization of M23C6 carbides.  相似文献   

9.
The conductivities, oxygen ion transference numbers, and oxygen permeation fluxes of NiO-30, 36, 42, and 48 wt pct Bi2O3, In2O3-30, 36, 42, and 48 wt pct Bi2O3, ZnO-15, 20, 25, and 30 wt pct Bi2O3, ZrV2O7-16, 20, 24, and 28 wt pct V2O5, and BiVO4-5, 7, 10, and 12 wt pct V2O5 partly molten slags have been measured by using the four-probe DC, volumetric measurements of the faradaic efficiency, and gas flow techniques, respectively, under various temperatures and oxygen partial pressure gradients. Results indicate that in the ranges of slag layer thicknesses 1 to 5 mm and temperatures 923 K to 1173 K (650 °C to 900 °C), used in the present study, the overall oxygen permeation kinetics is controlled by both chemical diffusion and surface exchange reactions. The oxygen permeation fluxes (3 × 10?9 to 9 × 10?8 mol/cm2 s) were found to increase with volume fraction of liquid. The oxygen ion transference number was found to be in the range 0.2 to 0.8. The ambipolar conductivity, characteristic thickness, and surface exchange coefficient were estimated to be in the ranges 1.1 × 10?3 to 2.3 × 10?1 S/cm, 2 × 10?2 to 7 × 10?2 cm, and 1.3 × 10?6 to 2.1 × 10?6 cm/s, respectively.  相似文献   

10.
Grain size effects on three generations of twins were investigated in extruded Mg-4 wt pct Li (-1 wt pct Al) alloys using electron-backscatter diffraction. Samples with three distinct grains sizes, yet the same texture and applied strain were analyzed. With these variables fixed, we show that compression and double twinning decrease substantially with decreasing grain size. We find that compression twinning exhibits a stronger grain size effect than tension twinning, whereas the compression twinning to double twinning transition is independent of grain size.  相似文献   

11.
Nowadays, great interests are rising on aluminum alloys for the applications at elevated temperature, driven by the automotive and aerospace industries requiring high strength, light weight, and low-cost engineering materials. As one of the most promising candidates, Al-Mn-Mg 3004 alloys have been found to possess considerably high mechanical properties and creep resistance at elevated temperature resulted from the precipitation of a large number of thermally stable dispersoids during heat treatment. In present work, the effect of Fe contents on the evolution of microstructure as well as high-temperature properties of 3004 alloys has been investigated. Results show that the dominant intermetallic changes from α-Al(MnFe)Si at 0.1 wt pct Fe to Al6(MnFe) at both 0.3 and 0.6 wt pct Fe. In the Fe range of 0.1–0.6 wt pct studied, a significant improvement on mechanical properties at elevated temperature has been observed due to the precipitation of dispersoids, and the best combination of yield strength and creep resistance at 573 K (300 °C) is obtained in the 0.3 wt pct Fe alloy with the finest size and highest volume fraction of dispersoids. The superior properties obtained at 573 K (300 °C) make 3004 alloys more promising for high-temperature applications. The relationship between the Fe content and the dispersoid precipitation as well as the materials properties has been discussed.  相似文献   

12.
The microtexture and grain boundary misorientation distributions (i.e., mesotexture) of the superplastic alloy Al-5 pct Ca-5 pct Zn have been investigated in the as-processed condition, after annealing at 520 °C (for times ranging from 7 minutes to 90 hours) and after tensile straining in the transverse direction (TD). Three different superplastic straining conditions were considered: 550 °C/10−2 s−1, 550 °C/10−1 s−1, and 400 °C/10−2 s−1. Microtexture data were obtained by means of computer-aided electron backscatter diffraction analysis methods. The retention of the deformation texture of the as-received material and the development of an increasingly bimodal grain boundary misorientation distribution following static annealing are consistent with the occurrence of recovery and continuous recrystallization. During superplastic straining, deformation texture components are also retained, but with a change in the grain boundary misorientation distribution toward random, indicating that grain switching occurs during grain boundary sliding (GBS). At the midlayer, however, a change from an initial texture component near the Cu-type texture component toward the Brass texture component, {011}〈211〉, was observed even as the misorientation distribution became more random. This change in texture component is associated with the occurrence of single slip during superplastic flow.  相似文献   

13.
The effect of in situ intermetallic formation on the foaming behavior of Al-3 wt pct Sn alloy has been investigated by introducing five different alloying elements—Co, Mg, Mn, Ni, and Ti. The alloying elements were designed, using thermodynamic calculations, to form various intermetallic phases which are (i) stable until final foaming temperature and (ii) dissolved during the foaming process. Thermal analysis using DSC was carried out to characterize the formation and dissolution of intermetallic phases during the foaming process. The foaming tests of the Al-3 wt pct Sn-X alloy were carried out using a mechanical expandometer and the macrostructure of the foam was scanned with an X-ray tomographer. It is found that the foaming behavior and foam stability of Al-3 wt pct Sn alloy can be actively controlled by the alloying elements.  相似文献   

14.
The basic aim of the present investigation is to study the role of particle size for high-temperature application of ZrSiO4-reinforced aluminum-based LM13 alloy composite as a bearing material. Composites containing 15 wt pct ZrSiO4 particles of two different size ranges (20 to 32 and 106 to 125 μm) in different proportion were prepared by the stir casting route. The microhardness measured at different areas indicates good interfacial bonding. Transition in the wear mode for all composites occurs after temperature 423 K (150 °C). The overall wear properties of DPS-2 composite containing 12 pct fine and 3 pct coarse particles are better at all temperatures for both low and high loads.  相似文献   

15.
To provide insight into the microstructural evolution and mechanical behavior of bulk nanostructured Ti, we used cold gas dynamic spraying of Ti particles to synthesize thick coatings (e.g., >10 mm in thickness). Accordingly, the grain size, lattice parameter, lattice strain, residual stress, porosity, microhardness, tensile, and compressive behavior of the bulk Ti deposits before and after annealing were comparatively analyzed. Our results show that the microstructure of the as-sprayed bulk Ti was characterized by a grain size of ~60 nm, lattice expansion (~2 pct for \( a \) and ~3 pct for \( c \) ), lattice strain (~1.65 × 10?5), and residual compressive stress (~53 MPa). Moreover, annealing of the as-deposited bulk Ti led to a significant decrease in lattice expansion, lattice strain, and residual stress, whereas porosity remained unchanged (~11 pct). The mechanisms of grain growth, as well as the evolution of particle interfaces during annealing, were also investigated. In terms of mechanical behavior, the as-deposited bulk Ti exhibited a very low modulus (52 GPa) with relatively high tensile and compressive strength values (180 and 850 MPa, respectively). Annealing in the temperature range of 1023 K to 1173 K (750 °C to 900 °C) led to a significant increase of tensile and compressive strength (to 380 MPa and more than 1200 MPa, respectively). Finally, annealing resulted in a slight increase of elastic modulus, which was rationalized on the basis of changes in pore geometry in the bulk Ti deposits.  相似文献   

16.
The effect of thermo-mechanical treatment on the mechanical properties of a novel metastable β-type Ti-30Nb-1Mo-4Sn (wt pct) alloy has been investigated. The solution-treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5 pct and subsequent annealing treat at 623 K (350 °C) for 30 minutes, a fine microstructure with nano-sized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 954 MPa and an ultimate tensile strength of 999 MPa. With low stability of β phase and small volume fraction of α precipitates, the annealed specimen exhibits a low Young’s modulus of 45 GPa. Such an excellent combination of the low elastic modulus and high strength in mechanical properties indicates a great potential candidate for biomedical applications.  相似文献   

17.
This paper investigates the high cycle fatigue properties of a recently developed high-strength cast magnesium alloy [Mg-3Nd-0.2Zn (all compositions in wt pct except when otherwise stated)] with varied Zr contents for grain refinement (NZ30K) and the influence of heat treatment conditions. The NZ30K alloy containing 0.45Zr and heat treated to the peak-aged T6 condition [14 hours at 473 K (200 °C)] shows the highest fatigue strength, about 100 MPa, which is about 25 pct higher than that of commercial AZ91D-T6 alloy. In the absence of casting flaws, the high cycle fatigue properties of the NZ30K alloy strongly depend on its grain size and heat treatment conditions. The dependency of fatigue strength on grain sizes follows the Hall–Petch relationship. The NZ30K alloy also shows a significant response to heat treatments. The fatigue strength increases in a near linear fashion with increasing yield strength of the material through heat treatment.  相似文献   

18.
In this study, the mechanical properties of as-cast and FSPed Al-2Ni-xMn alloys (x?=?1, 2, and 4 wt pct) were investigated and compared with those of the as-cast and FSPed Al-4Ni alloy. According to the results, the substitution of 2 wt pct Mn for 2 wt pct Ni leads to the formation of fine Mn-rich intermetallics in the microstructure increasing the tensile strength, microhardness, fracture toughness, and specific strength of alloy by 22, 56, 45, and 35 pct, respectively. At higher Mn concentrations, the formation of large Mn-rich platelets in the microstructure reduces the tensile properties. Friction stir processing at 12 mm/min and 1600 rpm significantly enhances both the strength and ductility of the alloy. The tensile strength, yield strength, fracture strain, fracture toughness, microhardness, and specific strength of FSPed Al-2Ni-4Mn alloy improved by 97, 83, 30, 380, 152, and 110  pct, respectively, as compared to those of the as-cast Al-4Ni alloy. This can be attributed to dispersion strengthening of Ni- and Mn-rich dispersoids, formation of ultrafine grains, and elimination of casting defects. The fractography results also show that the brittle fracture mode of the as-cast Mn-rich alloys turns to a more ductile mode, comprising fine and equiaxed dimples in FSPed samples.  相似文献   

19.
Al-SiC nanocomposites were prepared by high energy ball milling of mixtures of pure Al and 50-nm-diameter SiC nanoparticles, followed by spark plasma sintering. The final composites had grains of approximately 100 nm dimensions, with SiC particles located mostly at grain boundaries. The samples were tested in uniaxial compression by nano- and microindentation in order to establish the effect of the SiC volume fraction, stearic acid addition to the powder, and the milling time on the mechanical properties. The results are compared with those obtained for pure Al processed under similar conditions and for AA1050 aluminum. The yield stress of the nanocomposite with 1 vol pct SiC is more than ten times larger than that of AA1050. The largest increase is due to grain size reduction; nanocrystalline Al without SiC and processed by the same method has a yield stress seven times larger than AA1050. Adding 0.5 vol pct SiC increases the yield stress by an additional 47 pct, while the addition of 1 vol pct SiC leads to 50 pct increase relative to the nanocrystalline Al without SiC. Increasing the milling time and adding stearic acid to the powder during milling lead to relatively small increases of the flow stress. The hardness measured in nano- and microindentation experiments confirms these trends, although the numerical values of the gains are different. The stability of the microstructure was tested by annealing samples to 423 K and 523 K (150 °C and 250 °C) for 2 hours, in separate experiments. The heat treatment had no effect on the mechanical properties, except when treating the material with 1 vol pct SiC at 523 K (250 °C), which led to a reduction of the yield stress by 13 pct. The data suggest that the main strengthening mechanism is associated with grain size reduction, while the role of the SiC particles is mostly that of stabilizing the nanograins.  相似文献   

20.
In the current study, the effect of Sc addition on the interaction of concurrent precipitation and recrystallization in commercial AA3003 aluminum alloy was investigated using optical microscopy, scanning electron microscopy, and transmission electron microscopy. In case of AA3003 alloy, which was cold rolled to a true strain of 2.20 and heated at a heating rate of 150 K/s, the onset of precipitation and ending of recrystallization are signified by the critical temperature, T C ~740 K (467 °C). There is a change in the shape of the recrystallized grains from pancake-like to equiaxed shape, as the annealing temperature increases greater than T C. In case of AA3003 alloy microalloyed with 0.4 wt pct of Sc, the high no. density precipitation of coherent Al3Sc precipitates always occurs before recrystallization because of the small nucleation barrier and high rate of decomposition. This leads to extremely coarse pancake-like recrystallization grains with high fraction of low-angle grain boundaries in the entire annealing temperature range, even at a high brazing temperature of 883 K (610 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号