首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用了FLUENT软件建立了电渣重熔(ESR)过程二维轴对称瞬态模型.使用有限体积法求解耦合的电磁场、动量和能量守恒方程,铸锭的凝固过程由焓-多孔介质模型处理,系统地研究了电流对电渣重熔GH984G凝固过程多场耦合行为和凝固参数的影响规律.模拟结果表明:电流由2.3kA增大为2.5kA,体系中电流密度、磁感应强度、洛伦...  相似文献   

2.
《钢铁冶炼》2013,40(10):791-800
Abstract

Electroslag remelting (ESR) hollow ingot process with T-shape current supplying mould is a new metallurgical technology. A mathematical model was developed to describe the interaction of multiple physical fields of this process for studying the process technology. Maxwell, Navier-Stokes and heat transfer equations have been adopted in the model to analyse the electromagnetic field, magnetic driven fluid flow, buoyancy driven flow and heat transfer using finite element software ANSYS. Moreover, the model has been verified through the metal pool depth measurements, which were obtained during remelting of 10 electrodes into Φ900/500 mm hollow ingots of P91 steel, with a slag composition of 50–60 wt-% CaF2, 10–20 wt-% CaO, 20–30 wt-% Al2O3, ≤8 wt-% SiO2. There was a good agreement between the calculated results and the measured results. The calculated results show that the distribution of current density, magnetic induction intensity, electromagnetic force, Joule heating, fluid flow and temperature are symmetric but not uniform due to the multi-electrode arrangement in two symmetric groups. Simulation of the ESR hollow ingot process will help to understand the new technology process and optimise operating parameters.  相似文献   

3.
建立了瞬态三维耦合数学模型以探索旋转电极对电渣重熔过程中电磁场、流场、温度场和熔池形状的影响.通过求解麦克斯韦方程组得到电磁场的相关信息,利用VOF方法描述金属熔滴的运动,采用焓-多孔介质模型计算凝固过程.当电极旋转,金属熔滴在离心力作用下,从电极边缘抛出,增加了金属熔滴在渣池中停留的时间与沿途路径,有利于提高电渣重熔...  相似文献   

4.
贺铸  刘艳贺  刘双  刘政  李宝宽 《特殊钢》2014,35(4):16-19
利用有限元分析软件ANSYS求得稳定电渣重熔过程电极、渣池和钢锭系统电磁场和焦耳热场分布,并通过计算流体力学软件FLUENT模拟分析了耦合电磁场和焦耳热场的三维电渣重熔过程电极填充比0.3~0.7对电渣重熔系统温度场、速度场和电磁场的影响。结果表明,随着电极填充比的增加,速度最大值和湍动能最大值逐渐增加,但变化速率随填充比增加而下降;填充比0.3和0.5之间的最大湍动能差值约为填充比0.5和0.7之间湍动能的2倍;温度最大值随填充比不是单调变化的。  相似文献   

5.
建立了电磁搅拌条件下电渣重熔钢锭凝固过程数学模型。利用Visual Basic编程模拟分析了旋转电磁搅拌下15Mn钢的电渣重熔凝固过程,结果表明:未施加磁场时,模拟结果与实验结果较吻合;施加磁场时,电磁搅拌加强了钢液内部传热,熔池变平坦,有利于消除电渣锭宏观偏析和缩孔等缺陷,同时有利于晶核发展成等轴晶组织。  相似文献   

6.
The paper is devoted to comparison of electroslag remelting (ESR) with consumable electrode and electroslag refining with liquid metal (ESR LM) processes. The possibility of rearrangement of the heat contributions coming from the consumable electrode and current supplying mould (non-consumable electrode, CSM) makes the core of the ESR process organisation in the CSM. The usage of liquid metal instead of consumable electrodes allows to reduce liquid bath temperature and volume in order to provide low segregation ingot. The formal assessment of physico-chemical conditions and experimental measurements of desulphurisation have shown the same level of refining ability of both processes. Replacing the classic ESR by the ESR LM is a prospective way to produce high-quality ingots from sophisticated and hard-to-deform materials, whereas manufacturing of the consumable electrodes is technically problematic and costly.  相似文献   

7.
 基于传热学基本理论,建立了80 t级三相电渣炉大型钢锭电渣重熔过程数学模型,并通过工业生产75t TP316LN奥氏体不锈钢钢锭验证模型,研究了大型电渣钢锭温度场分布情况及二次晶间距的变化情况。结果表明:渣池中心部位温度达1800℃,自上而下沿着传热方向中心线温度逐渐降低;金属熔池最深处达1500mm,大约等于钢锭直径的0.8倍;金属熔池上方具有50mm圆柱段以保证渣皮薄而均匀;二次枝晶间距大小由钢锭外侧边缘向中心部位呈递增趋势,模拟结果与实际生产情况吻合。  相似文献   

8.
导电结晶器电渣重熔渣池局部发热密度最高值在电极角部和结晶器壁附近,电极端部下方仍存在"高温区",对非金属夹杂物去除提供热力学与动力学条件。电渣重熔过程中非金属夹杂物的去除主要发生在自耗电极端头熔滴形成阶段以及熔滴穿过熔渣层阶段。综合自耗电极端部熔化至熔滴形成过程阶段、熔滴滴落并穿过渣池至金属熔池阶段和金属熔池至铸锭凝固非金属夹杂物的上浮阶段的去除率,导电结晶器电渣重熔去除非金属夹杂物的能力不低于传统电渣重熔。  相似文献   

9.
Electroslag remelting (ESR) is widely used for the production of high-value-added alloys such as special steels or nickel-based superalloys. Because of high trial costs and the complexity of the mechanisms involved, trial-and-error-based approaches are not well suited for fundamental studies or for optimization of the process. Consequently, a transient-state numerical model has been developed that accounts for electromagnetic phenomena and coupled heat and momentum transfers in an axisymmetrical geometry. The model simulates the continuous growth of the electroslag-remelted ingot through a mesh-splitting method. In addition, solidification of the metal is modeled by an enthalpy-based technique. A turbulence model is implemented to compute the motion of liquid phases (slag and metal), while the mushy zone is described as a porous medium the permeability of which varies with the liquid fraction, thus enabling accurate calculation of solid/liquid interaction. The coupled partial differential equations (PDEs) are solved using a finite-volume technique. The computed results are compared to the experimental observation of an industrial remelted ingot; the melt pool depth and shape, in particular, are investigated, in order to validate the model. These results provide valuable information about the process performance and the influence of the operating parameters. In this way, we present an example of a model used as a support in analyzing the influence of the electrode fill ratio. This article is based on a presentation given at the International Symposium on Liquid Metal Processing and Casting (LMPC 2007), which occurred in September 2007 in Nancy, France.  相似文献   

10.
In this second article of a two-part series, a mathematical model for heat transport and solidification of aluminum in electromagnetic casting is developed. The model is a three-dimensional one but involves a simplified treatment of convective heat transport in the liquid metal pool. Heat conduction in the solid was thought to play a dominant role in heat transport, and the thermal properties of the two alloys used in measurements reported in Part I (AA 5182 and 3104) were measured independently for input to the model. Heat transfer into the water sprays impacting the sides of the ingot was approximated using a heat-transfer coefficient from direct chill casting; because this heat-transfer step appears not to be rate determining for solidification and cooling of most of the ingot, there is little inaccuracy involved in this approximation. Joule heating was incorporated into some of the computations, which were carried out using the finite element software FIDAP. There was good agreement between the computed results and extensive thermocouple measurements (reported in Part I) made on a pilot-scale caster at Reynolds Metals Company (Richmond, VA).  相似文献   

11.
Currently, the market demands for large-scale and high-quality slab ingots are increasing significantly.A novel electroslag remelting withdrawal (ESRW) process with two series-connected electrodes and a T-shaped mould was developed to produce large-scale and high-quality slab ingots.It is very difficult to ob-tain large slab ingots with good surface quality and high width-to-thickness ratio.And it is not efficient for improving the quality of slab ingots by using trial-and-error-based approaches because the ESRW mecha-nisms are very complex.Thus, a three-dimensional mathematical model was developed to determine the relationship between process parameters and physical phenomena during the ESRW process.The relation-ship between the temperature field of the ESRW process and the surface quality of slab ingots was estab-lished.A good agreement between the simulated and measured temperature fields of slab ingots was ob-tained.The results indicate that the maximum values of current density, electromagnetic force and Joule heat all occur at the electrode-slag interface between the two electrodes.It can be found that the flow is turbulent and the temperature distribution is uniform in the slag pool with the influences of buoyancy and electromagnetic force.The wrinkles in the narrow faces of slab ingots are caused by the relatively lower in-put power.Increasing the electrode width and reducing the curvature can significantly improve the surface quality of slab ingots.  相似文献   

12.
The paper is based on the development and use of a mathematical model that simulates the electroslag remelting (ESR) operation. The model assumes axisymmetrical geometry and steady state. Maxwell equations are first solved to determine the electromagnetic forces and Joule heating. Next, coupled fluid flow and heat transfer equations are written for the two liquids (slag and liquid metal). Thek-ε model is used to represent turbulence. The system of coupled partial differential equations is then solved, using a control volume method. Using the operating parameters as inputs, the model calculates the current density, velocity, and temperature throughout the fluids. This paper is concerned with fluid flow and heat transfer in the slag phase. After being validated by comparing its results with experimental observation, the model is used to evaluate the influence of operating variables, such as the fill ratio, and the thermophysical properties of the slag.  相似文献   

13.
Heat transfer and fluid flow phenomena in electroslag refining   总被引:4,自引:0,他引:4  
A mathematical formulation has been developed to represent the electromagnetic force field, fluid flow and heat transfer in ESR units. In the formulation, allowance has been made for both electromagnetically driven flows and natural convection; furthermore, in considering heat transfer the effect of the moving droplets has been taken into account. The computed results have shown that the electromagnetic force field appears to be the more important driving force for fluid motion, although natural convection does affect the circulation pattern. The movement of the liquid droplets through the slag plays an important role in transporting thermal energy from the slag to the molten metal pool, although the droplets are unlikely to contribute appreciably to slag-metal mass transfer The for-formulation presented here enables the prediction of thermal and fluid flow phenomena in ESR units and may be used to calculate the electrode melting rates from first principles. While a detailed comparison has not yet been made between the predictions based on the model and actual plant scale measurements, it is thought that the theoretical predictions are consistent with the plant-scale data that are available.  相似文献   

14.
N. Ren  L. M. Li  F. S. Qi  Z. Q. Liu 《钢铁冶炼》2018,45(2):125-134
Electroslag remelting (ESR) furnace with triple-electrode is always used to produce large ingots and the process complexity makes the application not widely spread. Thus, a transient three-dimensional coupled model in industrial scale has been developed to investigate the coupled magneto-hydrodynamics two-phase flow and heat transfer in system. Different from the previous studies with multi-electrode, the current work reveals the triple-electrode ESR with the formation of metal droplets and the solidification of liquid metal. Compared with single-electrode system with the same fill ratio, the heat source in the slag pool with triple-electrode is much more dispersive, and the U-shape metal pool in the ESR furnace with triple-electrode is much shallower and flatter than the V-shaped one in the single-electrode system. A shorter distance from each electrode to the center of system brings a higher heat efficiency, as well as a deeper and narrower metal pool.  相似文献   

15.
电源频率对电渣重熔锭质量的影响   总被引:1,自引:0,他引:1  
常立忠  杨海森  李正邦 《钢铁》2008,43(9):33-0
 研究了不同频率对电渣锭质量的影响。研究结果发现:电源频率的降低导致了渣池电磁搅拌的强烈,促进了渣池的温度均匀,因而降低了金属熔池深度;随着电源频率的降低,铸锭中的氧含量明显增高,这主要是由于在渣池中的部分氧化物发生了电解反应,导致了氧进入钢中,增加了钢中的夹杂物含量。  相似文献   

16.
《钢铁冶炼》2013,40(8):611-617
Abstract

Steel solidification process control, especially in the solidification process of high alloy steel, and improvement of the solidification structure have been increasingly gaining interest among metallurgists, particularly the electroslag workers. To further develop the electroslag remelting (ESR) process and to improve the advantage of the ingot solidification structure, the effects of relative motion between the consumable electrodes and the mould (namely, mould rotation) on chemical element distribution were observed in this study, as well as the compact density changes in electroslag ingots. Experiment results show that applying relative motion between the mould and the consumable electrodes in ESR results in a more uniform chemical element distribution in the electroslag ingots. Compared with the electroslag ingot of conventional ESR, maximum segregation of carbon could decrease from 3·19 to 1·146, and statistical segregation decreased from 0·2636 to 0·0608. Maximum segregation of chromium could decrease from 1·316 to 1·253, and statistical segregation decreased from 0·2753 to 0·1201. The compact density for the stationary mould increased from 0·7693 to a compact density of 0·9501 for the rotating mould. The improvement in the solidification structure of the electroslag ingot can be attributed to mould motion, which led to the generation of a shallow pool and the improvement of the solidification structure. But the excessive rotation rate is harmful to solidification structure instead due to the molten metal pool motion caused by violent slag pool motion.  相似文献   

17.
15 t康萨克电渣炉电压摆动控制系统的改进   总被引:3,自引:1,他引:2  
康萨克电渣炉通过控制炉电压摆动范围等效地保持电极距渣平面的距离不变,从而保持了渣阻恒定及熔池形状不变,以便获得高质量的电渣锭。根据对康萨克电渣重熔炉电压摆动控制原理的分析,开发了一套新的控制系统。该系统已应用于邢台机械轧辊集团铸钢分厂康萨克15 t电渣重熔炉,6个月运行结果表明,电渣炉电压摆幅控制在±2.5V,电渣锭表面质量良好,部分指标甚至优于原康萨克的电控系统。  相似文献   

18.
Most of the metallurgical effects resulting from electroslag remelting of metal may be divided into two groups, namely, the effects due to the slag/metal reactions taking place and the effects due to the special solidification conditions characteristic of this process. Solidification of ESR ingots takes place progressively as heat is removed from the liquid metal pool via the mold walls. By careful matching of the melting rate with the freezing rate, the desired shallow metal pool is attained, leading to the well known directional solidification pattern with consequent improvement in properties of the steel. The choice of power parameters is limited by a compromise between the need for a high melting rate for economic reasons (costs) which may tend to give a rather deep metal pool and the need for a shallow metal pool to obtain optimum metallurgical properties. In this process only a relatively small amount of the total energy input is actually utilized to melt down the metal. The major part of the energy is lost from the slag and metal pool to the water cooled mold. In this paper the results of numerical and experimental investigations are presented, setting out a simple method of saving energy and controlling the solidification pattern of the ingot. This method involves the addition of solid particles to the melt to utilize the surplus energy evolved in the central area of the slag bath.  相似文献   

19.
A mathematical formulation has been developed to represent the electromagnetic force field, fluid flow and heat transfer in ESR units. In the formulation, allowance has been made for both electromagnetically driven flows and natural convection; furthermore, in considering heat transfer, the effect of the moving droplets has been taken into account. The computed results have shown that the electromagnetic force field appears to be the more important driving force for fluid motion, although natural convection does affect the circulation pattern. The movement of the liquid droplets through the slag plays an import-ant role in transporting thermal energy from the slag to the molten metal pool, although the droplets are unlikely to contribute appreciably to slag-metal mass transfer. The for-formulation presented here enables the prediction of thermal and fluid flow phenomena in ESR units and may be used to calculate the electrode melting rates from first principles. While a detailed comparison has not yet been made between the predictions based on the model and actual plant scale measurements, it is thought that the theoretical predictions are consistent with the plant-scale data that are available. Presently on leave from Institute of Chemical Engineering and Technology, Punjab University, Lahore-1, Pakistan.  相似文献   

20.
为了改善M2高速钢中的碳化物分布,通过数值模拟详细分析了结晶器旋转对M2高速钢电渣重熔过程温度场、金属熔池形状的影响,并进一步通过实验室双极串联结晶器旋转电渣炉研究了旋转速率对M2高速钢电渣重熔过程的影响。采用扫描电镜观察并分析了结晶器旋转对电渣锭中碳化物形貌、分布的影响;采用小样电解萃取实验,分析了结晶器旋转速率对碳化物组成的影响。结果发现,随着结晶器旋转速率的增加,渣池的高温区从芯部向边部迁移,温度分布更加均匀;金属熔池的深度变浅,两相区的宽度收窄,从而导致局部凝固时间降低、二次枝晶间距减小。与此相对应,随着结晶器旋转速率的增加,M2电渣锭的渣皮更薄、更加均匀,结晶器对电渣锭的冷却强度更大,碳化物网格开始破碎、变薄,碳化物由片状改变为细小的棒状。X射线衍射分析表明,不论结晶器是否旋转,碳化物的类型始终不变,由M2C、MC和M6C组成,但是随旋转速率增加M2C含量增加,MC和M6C含量降低。碳化物组织得以改善的主要原因在于,结晶器旋转导致金属熔池深度降低、两相区宽度收窄,改善了凝固条件,减轻了元素偏析。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号