共查询到17条相似文献,搜索用时 62 毫秒
1.
基于动态阈值对称差分和背景差法的运动对象检测算法 总被引:1,自引:0,他引:1
提出一种基于动态阈值对称差分和背景差法的运动对象检测算法.首先通过建立一个基于统计的可靠背景更新模型,由背景差法得到基本准确的前景图像;然后与用对称差分法得到的差分图像综合;最后得到完整可靠的运动目标图像.中间采用了一种动态的最优阈值获取方法,然后用形态学滤波和连通区域面积检测进行后处理,以消除噪声和背景扰动带来的影响,并用区域填充算法来填补目标区域的小孔,从而将视频序列中的运动目标比较可靠地检测出来.实验结果表明,该方法快速、准确,有一定的实际应用价值. 相似文献
2.
3.
4.
基于减背景与对称差分的运动目标检测 总被引:2,自引:1,他引:2
本文提出了一种基于背景相减法和对称差分法来进行运动目标检测的方法。首先通过混和高斯模型建立运动区域的背景模型,并对背景进行实时的更新,然后通过背景相减法确定运动目标区域,再和对称差分法相结合,得到比较可靠的运动目标区域。 相似文献
5.
通过对视频运动对象特点的分析,提出一种针对静态场景的运动目标检测算法。该算法采用一种改进的时间平均法初始化背景,在有目标的情况下也能构建出可靠的背景,并融合背景减法和多重对称差分法对背景进行自适应更新。实验结果证明,该算法计算简单,对光线变化具有适应性,能够完整地提取运动目标,改善了运动目标的检测效果,具有一定的鲁棒性。 相似文献
6.
针对传统运动目标检测方法存在的缺点和不足,在对现有目标检测算法进行分析对比的基础上,设计并实现了一种简单有效的目标检测方案。首先提出了一种基于像素灰度归类和单高斯模型的背景重构算法,进而以此为基础采用背景差分法进行目标的检测,同时采用分层背景更新算法较好地解决了拖影和光照大面积变化的情况,最后给出了一种解决阴影的简单算法。实验结果表明,该算法高效、快速,可以满足实时检测的需要。 相似文献
7.
一种快速的基于对称差分的视频分割算法 总被引:4,自引:0,他引:4
基于MPEG—4的图像压缩编码,为了高效率分割,实现低码率实时压缩,提出一种快速的基于对称差分的视频分割算法.对图像序列中每连续三帧图像进行对称差分,检测出目标的运动范围.同时利用上一帧分割出来的模板对检测出来的目标运动范围进行修正,最后通过模板填充把修正后的运动目标模板快速地提取出来,实现视频分割. 相似文献
8.
9.
为了降低背景提取算法的时间复杂度和空间复杂度,提出一种结合差分图像分块、背景减除和帧间差法的背景提取方法。对差分图像进行分块分类,提出了一种统计像素值的子块分类法,对不同类的块用不同的更新策略进行背景实时更新。该算法有效解决了背景更新过程中运动目标逗留、背景物体移入移出等问题的影响。实验结果表明该算法运算速度快、鲁棒性高、能准确地提取实时背景。 相似文献
10.
11.
针对帧差法易产生空洞以及背景减法不能检测出与背景灰度接近的目标的问题,提出了一种将对称差分法和背景减法相结合的运动目标检测算法。首先利用对称差分法和背景减法分别得到两种差分图像,并用OTSU分割法(大津法)得到合适的阈值将这两种差分图像二值化,然后将得到的两种二值化图像进行或运算,最后利用图像形态学滤波得到准确的运动目标。 相似文献
12.
提出了基于背景重建的运动目标分割改进算法。首先使用多帧差获得初次的背景和前景分离,使用前后多帧差重合部分的合并作为当前帧的运动对象,并通过形态膨胀操作消除二值模板中的空洞,得到该帧的并不精确的初次运动目标掩膜。通过掩膜获得稳定的累积背景。通过得到的背景差和帧间差相结合制定判断原则,获得精确的运动目标掩膜,从而对运动目标进行分割。实验表明该算法对于较大面积的运动目标,或者当摄像机拍摄方向与目标运动方向一致的情形下都可以得到较准确的效果。 相似文献
13.
14.
基于帧差法和背景差法融合的车流量检测方法 总被引:1,自引:0,他引:1
研究优化车流量检测准确度问题。针对运动目标速度和外界环境都是影响车流量检测准确性,容易造成车流量的漏检和误检等。为了克服传统算法所存在的缺陷,在现有算法的基础上,提出了一种融合帧差法和背景差法的智能车流量检测方法。首先利用帧间差分方法为主,结合减背景方法为辅,然后通过一种迭代阈值分割法滤除噪声并对背景进行实时更新。完成了多车道的车流量检测,并进行了仿真,结果得到多组数据,并提高了计算准确率。仿真结果表明,改进方法可有效地提高了车流量检测精度。 相似文献
15.
16.
基于帧差分块的混合高斯背景模型 总被引:1,自引:0,他引:1
针对混合高斯背景模型计算量过大、对复杂场景的适应能力较差等问题,提出了一种基于帧差分块和自适应学习率的混合高斯背景模型改进算法。引入分块模型思想,有效结合了像素的空域信息;根据帧间差分结果,判断可疑前景区域和背景区域,提高了检测灵敏度;针对前景可疑区域采用复杂模型,保证运动目标检测的精度,反之采用简单模型降低计算量;通过自适应学习率,加速背景的形成与消退。实验结果证明该算法较好地兼顾了检测精度和计算代价。 相似文献
17.
基于改进K-均值聚类算法的背景提取方法 总被引:2,自引:0,他引:2
背景提取是运动目标检测中重要而基础的一个环节.分析了一般静态背景提取算法的原理和缺陷,提出了一种新颖的基于改进K-均值聚类算法的背景提取方法,给出了动态三元组(DTDG)的概念,并且对每个像素用3个动态三元组进行建模,实现了原始背景的提取.实验验证了所提方案的有效性. 相似文献