首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
HAP2 forms a capping structure, which binds very tightly to the distal end of flagellar filaments and still allows insertion of flagellin subunits below the cap by an unknown mechanism. Terminal regions of HAP2 from Salmonella typhimurium were found to be quickly degraded by various proteases, indicating that HAP2 also possesses disordered terminal regions like other axial proteins of bacterial flagellum. Removal of these portions by trypsin results in a fragment of 40 kDa (HP40), which lacks 42 NH2-terminal and 51 COOH-terminal residues. HAP2 in solution readily associates into a decameric structure without any significant population of intermediate oligomeric forms. The HP40 fragments, however, do not form decamers, while they can assemble into pentamers, as revealed by chemical cross-linking and analytical ultracentrifugation. Decameric HAP2 also dissociates into pentamers and smaller oligomers upon a heat induced conformational transition around 36 degreesC. While the highly mobile terminal regions are immobilized in decameric HAP2 complexes, they are still largely disordered in the pentameric state. These results demonstrate that the intersubunit interactions within the pentamers are mainly through the HP40 portions, whereas the terminal regions are responsible for association of pentamers into decameric complexes. Several observations indicate that HAP2 performs its capping function as a pentamer. We suggest that binding of the pentameric HAP2 cap to the filament is mediated by the highly flexible terminal regions. Indeed, HP40 fragments are unable to cap the end of filaments, while removal of about 30 residues from both terminal regions of HAP2 results in a highly reduced capping ability. A model is presented to explain the molecular mechanism of capping, in which conformational entropy in the disordered terminal regions moderates the otherwise too tight HAP2-filament interactions to allow insertion of flagellin subunits below the cap.  相似文献   

2.
Using a liquid-helium-cooled superconducting electron cryo-microscope, we obtained low-dose images of negatively stained preparations at 4 K and collected structural data to 1/9.6 -1 for flagellar filaments from the strain SJW117 of Salmonella typhimurium (serotype gt). The subunits of this left-handed, straight filament are non-helically perturbed in a pairwise manner. The perturbation corresponds to an alternating conformation in every other row of subunits. These are the 5-start rows and, necessarily, the resulting structure has a seam. The perturbation is not confined to the outside but extends into the structure. We separated the non-symmetric and symmetric parts of the structural data and generated a three-dimensional reconstruction from the latter. The resulting density map is a structure similar in domain organization to the left-handed filament of S. typhimurium SJW1660. Filtered images generated from the non-symmetric component show an ordered and polar structure. The nature of the perturbation was analyzed by model building using a sphere to represent the subunit at low resolution. A lateral shift of approximately 10 degrees mimics the perturbation.  相似文献   

3.
During flagellar morphogenesis in Salmonella typhimurium, the genes involved in filament assembly are expressed fully only after completion of hook-basal body assembly. This coupling of gene expression to morphogenesis is achieved by exporting the flagellum-specific anti-sigma factor, FlgM, out of the cell through the mature hook-basal body structure. Therefore, the flagellum-specific export apparatus must be able to sense the assembly state of the flagellar structure and to turn on FlgM export at a specific stage of hook assembly. It has been suggested that FlhB may act as the molecular switch which mediates this ordered export. Here, I report genetic evidence that in addition to FlhB, the product of a newly identified gene, rflH, is involved in the negative regulation of FlgM export. FlgM is released through the basal body structure lacking the hook and the filament only when the flhB and rflH genes are both defective. Therefore, the export gate for FlgM should be double locked by FlhB and RflH. The rflH gene is located at around 52 min, where no flagellum-related gene has been found. I propose a revised model of the export-switching machinery which consists of two systems, the hook-length signal transduction pathway and the double-locked gate for FlgM export.  相似文献   

4.
MotA and MotB are cytoplasmic membrane proteins that form the force-generating unit of the flagellar motor in Salmonella typhimurium and many other bacteria. Many missense mutations in both proteins are known to cause slow motor rotation (slow-motile phenotype) or no rotation at all (non-motile or paralysed phenotype). However, large stretches of sequence in the cytoplasmic regions of MotA and in the periplasmic region of MotB have failed to yield these types of mutations. In this study, we have investigated the effect of a series of 10-amino-acid deletions in these phenotypically silent regions. In the case of MotA, we found that only the C-terminal 5 amino acids were completely dispensable; an adjacent 10 amino acids were partially dispensable. In the cytoplasmic loop region of MotA, deletions made the protein unstable. For MotB, we found that two large segments of the periplasmic region were dispensable: the results with individual deletions showed that the first consisted of six deletions between the sole transmembrane span and the peptidoglycan binding motif, whereas the second consisted of four deletions at the C-terminus. We also found that deletions in the MotB cytoplasmic region at the N-terminus impaired motility but did not abolish it. Further investigations in MotB were carried out by combining dispensable deletion segments. The most extreme version of MotB that still retained some degree of function lacked a total of 99 amino acids in the periplasmic region, beginning immediately after the transmembrane span. These results indicate that the deleted regions in the MotA cytoplasmic loop region are essential for stability; they may or may not be directly involved in torque generation. Part of the MotA C-terminal cytoplasmic region is not essential for torque generation. MotB can be divided into three regions: an N-terminal region of about 30 amino acids in the cytoplasm, a transmembrane span and about 260 amino acids in the periplasm, including a peptidoglycan binding motif. In the periplasmic region, we suggest that the first of the two dispensable stretches in MotB may comprise part of a linker between the transmembrane span of MotB and its attachment point to the peptidoglycan layer, and that the length or specific sequence of much of that linker sequence is not critical. About 40 residues at the C-terminus are also unimportant.  相似文献   

5.
Frameshift mutations in the fliK gene of Salmonella result in abnormal elongation of the hook and the failure to assemble filament (polyhook phenotype). Second-site suppressor mutations restore filament assembly, but the cells often remain defective in hook-length control (polyhook-filament phenotype). Where the suppressor mutations are intragenic, the second mutation restores the original frame, generating a region of frameshifted sequence, but restoring the natural C terminus. Some of these frameshifted sequences contain a UGA (opal) termination codon. These cells have few flagella and swarm poorly. We suspected that readthrough of UGA by tRNATrp might be the reason for the partial function. When the UGA codon was changed to the Trp codon UGG, flagellar assembly and function were restored to wild-type levels. Conversely, underexpression of the wild-type fliK gene, achieved by changing the sole Trp codon in the sequence (Trp271) to UGA, decreased both the number of flagella and the ability to swarm. These results validate the readthrough hypothesis and indicate that low levels of FliK sustain some degree of flagellation and motility. At low levels of FliK, most flagella had polyhooks. With increasing amounts, the morphology progressively changed to polyhook-filament, and eventually to wild-type hook-filament. When FliK was overproduced, the hook length was slightly shorter (46(+/-7) nm) than that of the wild-type strain (55(+/-9) nm). FliK levels were measured by immunoblotting. Wild-type levels were about 40 to 80 molecules/cell. FliK synthesized by UGA readthrough could be detected when overproduced from plasmid fliK-W271opal, and the levels indicated a probability of readthrough of 0.002 to 0.01. This value was used to estimate the cellular level of underexpressed FliK, which could partly restore function to a fliK mutant, at about 0.07 to 0.8 molecule/cell. These results suggest that FliK does not form a large structure in the cytoplasm and may function as a regulatory protein for protein export. A model for hook-length control is presented that involves feedback from the assembly point to the export apparatus.  相似文献   

6.
Salmonella typhimurium expresses two antigenically distinct flagellins, each containing a different H antigen (i and 1,2), the combination of which is highly specific for this serotype. In this study, overlapping recombinant flagellin fragments were constructed from the fliC (H:i) and fljB (H:1,2) flagellin genes, and the expression products were tested for binding to H antigen-specific monoclonal and polyclonal antibodies. A minimal area, 86 amino acids for H:i and 102 amino acids for H:1,2, located in the central variable domain of each flagellin was required for the binding of serotype-specific antibodies, providing further evidence for the presence of a discontinuous H epitope. Two peptides comprising these areas were shown to be highly suitable for application as antigens in an enzyme-linked immunosorbent assay detecting S. typhimurium-specific antibody.  相似文献   

7.
The results of the comparative study of the phenotypical properties and the plasmid profile of 63 strains of salmonellae, belonging to 44 serotypes of groups B, C1, C2, C3, D, E1, E4, F. The study revealed that strains of different serotypes had their individual plasmid profile. Strains of the same serotype of salmonellae isolated from similar sources had an identical plasmid profile, while strains isolated from different sources differed in their plasmid profiles, though they might have a similar phenotype. Plasmid analysis was shown to be an effective method for the intraspecific typing of rarely isolated Salmonella serotypes and suitable for use as the basis of the microbiological monitoring of salmonellae.  相似文献   

8.
9.
In supercoiled forms of flagellar filaments, which are thought to be produced by combinations of two distinct subunit lattices, the lattices are elastically deformed in 11 different ways, depending on their azimuthal positions on the circumference of a tube with 11 protofilaments. Those two interactions are nonequivalent as opposed to quasiequivalent ones in elastically deformed lattices of otherwise identical interactions. The term nonequivalence is defined to represent different bonding interactions, and quasiequivalent is used to describe deformed but conserved bonding interactions. By using two distinct lattices that were accurately determined by x-ray fiber diffraction, 10 possible supercoiled forms of flagellar filaments were simulated, based on a bistable-subunit packing model. Comparison to the observed forms showed good agreement, indicating that the model and determined lattice parameters effectively represent realistic features of the structure. The simulated quasiequivalent lattices have been compared to the two nonequivalent lattices, revealing an interesting feature: the maximum deviation in the intersubunit distance by elastic deformation is almost three-quarters of the difference between the two distinct lattices, demonstrating a balanced coexistence of a well-defined conformational distinction and extensive adaptability in the molecular structure of flagellin and its packing interactions.  相似文献   

10.
Using radioactive in situ hybridization, we have mapped the expression of Huntingtin-associated protein (HAP1) mRNA in rat brain at developmental stages (E12-E19, PO-P21), in adult rats (3 months) and in 'aged' (19-21 months) rats. Using two pairs of 45mer oligonucleotide probes specific for HAP1A and a probe which recognizes regions of both the HAP1A and HAP1B mRNA sequences (panHAP1), we find that the expression of HAP1 mRNA is specific to the CNS and restricted predominantly to anatomically connected limbic structures, particularly the amygdala (medial and corticomedial nuclei), the hypothalamus (arcuate, preoptic, paraventricular and lateral hypothalamic area), bed nucleus of the stria terminalis (BNST) and the lateral septal nuclei. HAP1 mRNA was detected in embryos at E12 and displayed a prevalent distribution in the developing limbic structures by E15. In aged, 19-21-months-old, rats there is a downregulation of HAP1 mRNA expression across all CNS loci where HAP1 was previously abundant. The lowest levels of HAP1 mRNA expression corresponded with the areas of greatest pathological cell loss in Huntington's disease (HD); the caudate putamen, globus pallidus and neocortex. These observations support the suggestion that HAP1 plays an important role in the neuropathology of HD.  相似文献   

11.
We have recently identified a microtubule binding domain within the motor protein cytoplasmic dynein. This domain is situated at the end of a slender 10-12 nm projection which corresponds to the stalks previously observed extending from the heads of both axonemal and cytoplasmic dyneins. The stalks also correspond to the B-links observed to connect outer arm axonemal dyneins to the B-microtubules in flagella and constitute the microtubule attachment sites during dynein motility. The stalks contrast strikingly with the polymer attachment domains of the kinesins and myosins which are found on the surface of the motor head. The difference in dynein's structural design raises intriguing questions as to how the stalk functions in force production along microtubules. In this article, we attempt to integrate the myriad of biochemical and EM structural data that has been previously collected regarding dynein with recent molecular findings, in an effort to begin to understand the mechanism of dynein motility.  相似文献   

12.
A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.  相似文献   

13.
14.
The CorA transport system is the major Mg2+ influx pathway for bacteria and the Archaea. CorA contains three C-terminal transmembrane segments. No conserved charged residues are apparent within the membrane, suggesting that Mg2+ influx does not involve electrostatic interactions. We have mutated conserved residues within the third transmembrane segment to identify sites involved in transport. Mutation of conserved aromatic residues at either end of the membrane segment to alternative aromatic amino acids did not affect total cation uptake or cation affinity. Mutation to alanine greatly diminished uptake with little change in cation affinity implying that the conserved aromatic residues play a structural role in stabilizing this membrane segment of CorA at the interface between the bilayer and the aqueous environment. In contrast, mutation of Tyr292, Met299, and Tyr307 greatly altered the transport properties of CorA. Y292F, Y292S, Y292C, or Y292I mutations essentially abolished transport, without effect on expression or membrane insertion. M299C and M299A mutants exhibited a decrease in cation affinity for Mg2+, Co2+, or Ni2+ of 10-50-fold without a significant change in uptake capacity. Mutations at Tyr307 had no significant effect on cation uptake capacity; however, the affinity of Y307F and Y307A mutations for Mg2+ and Co2+ was decreased 3-10-fold, while affinity for Ni2+ was unchanged compared with the wild type CorA. In contrast, the affinity of the Y307S mutant for all three cations was decreased 2-5-fold. Projection of the third transmembrane segment as an alpha-helix suggests that Tyr292, Met299, and Tyr307 all reside on the same face of the alpha-helix. We interpret the transport data to suggest that a hydroxyl group is important at Tyr307, and that these three residues interact with Mg2+ during transport, forming part of the cation pore or channel within CorA.  相似文献   

15.
Egg weight, specific gravity, conductance, and ability of Salmonella to penetrate the shell and membranes were determined for hatching eggs from a commercial broiler breeder flock. Thirty unsanitized eggs were sampled on Weeks 29, 34, 39, 42, 48, 52, and 56 of flock age for specific gravity and conductance. An additional 10 intact eggs were inoculated with Salmonella by a temperature differential immersion method for 1 min. Eggs were then emptied of contents and filled with a selective medium that allowed visualization of Salmonella growth on the inside of the shell and membrane complex. Over the 27-wk sampling period, egg weight increased from 56 to 66 g and was positively correlated with hen age (r = 0.96, P < 0.05). However, neither specific gravity (ranging from 1.077 to 1.082) nor eggshell conductance (ranging from 14.7 to 17.9 mg weight loss/d per torr) showed any clear trend throughout the life of the flock despite the increase in egg weight. Conductance values were not correlated with specific gravity. The number of eggs positive for Salmonella penetration after 24 h incubation showed a general upward trend with flock age; however, penetration frequency and hen age were not found to be significantly correlated (P > 0.05). No relationship was found between egg specific gravity, conductance, or egg weight and the likelihood of Salmonella to penetrate the eggshell. Because shell characteristics did not change over time and the penetration patterns did vary, it is likely that factors other than specific gravity and conductance were involved in the penetration of eggshells by Salmonella.  相似文献   

16.
The state of melt before solidification is of great importance for the properties of metal products made from low-alloy steels. It depends on the melting method, the type of charge materials, the temperature-time parameters of melting, the intensity of mixing during out-furnace treatment, and other technological parameters. The improvement of the physical properties of liquid steel as a result of various actions demonstrates the formation of a more equilibrium and homogeneous state of melt, which substantially influences the structure, properties, and quality of metal products.  相似文献   

17.
In the filamentous bacterium Streptomyces coelicolor, the cell division protein FtsZ is required for the conversion of multinucleoidal aerial hyphae into chains of uninucleoidal spores, although it is not essential for viability. Using immunofluorescence microscopy, we have shown that FtsZ assembles into long, regularly spaced, ladder-like arrays in developing aerial hyphae, with an average spacing of about 1.3 microm. Within individual hyphae, ladder formation was relatively synchronous and extended for distances over 100 microm. These ladders were present only transiently, decreasing in intensity as chromosomes separated into distinct nucleoids and disappearing upon the completion of septum formation. Evidence from the overall intensity of immunofluorescence staining suggested that ladder formation was regulated in part at the level of the accumulation and degradation of FtsZ within individual aerial hyphae. Finally, FtsZ ladder formation was under developmental control in that long arrays of FtsZ rings could not be detected in certain so-called white mutants (whiG, whiH and whiB), which are blocked in spore formation. The assembly of FtsZ into ladders represents the earliest known molecular manifestation of the process of spore formation, and its discovery provides insight into the role of whi genes in the conversion of aerial hyphae into chains of spores. We have also described a novel use of a cell wall-staining technique to visualize apical tip growth in vegetatively growing hyphae.  相似文献   

18.
The composition and thermodynamic characteristics of plasma-forming gases (Ar, N2, H2, and mixtures Ar + N2 and Ar + H2) depending on temperature are investigated using thermodynamic modeling. The equilibrium composition and thermodynamic properties of the plasma–“particle” system are modeled. Pure metals, oxides, technical powders, and powder mixtures were considered as the particle. The influence of power materials TiO2, Al2O3, and Fe3O4 on the variation in the plasma enthalpy is investigated. It is shown that computer modeling of the influence of thermodynamic parameters of the heterogeneous plasma jet makes it possible to optimize the modes of the plasma deposition and formation of plasma coatings. The proposed approach substantially shortens the time necessary to develop the formation technologies of coatings with the specified functional properties such as protective, antiwear, etc.  相似文献   

19.
20.
Expression of the cDNA for Aequorea green fluorescent protein in E. coli yielded a fused protein with fluorescence excitation and emission spectra virtually identical to those of the native green fluorescent protein. Further, a solution of the protein, when mixed with aequorin and calcium ion, emitted a greenish luminescence characteristic of the in vivo luminescence of the animal, indicating a radiationless energy transfer to the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号