首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains unexplained. One potential pathogenetic mechanism is chronic toxicity due to disturbances of the glutamatergic neurotransmitter system, mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive glutamate receptors. Functional AMPA receptors consist of various combinations of four subunits (designated GluR1-4). The GluR2 subunit is functionally dominant and renders AMPA receptors impermeable to calcium. Most native AMPA receptors in the mammalian central nervous system (CNS) contain the GluR2 subunit and are calcium impermeable. We have investigated the composition of AMPA receptors expressed on normal human spinal motor neurons by in situ hybridization to determine their likely subunit stoichiometry. Highly significant levels of mRNA were detected for the GluR1, GluR3, and GluR4 subunits. However, GluR2 subunit mRNA was not detectable in this cell group. The absence of detectable GluR2 mRNA in normal human spinal motor neurons predicts that they express calcium-permeable AMPA receptors unlike most neuronal groups in the human CNS. Expression of atypical calcium-permeable AMPA receptors by human motor neurons provides a possible mechanism whereby disturbances of glutamate neurotransmission in ALS may selectively injure this cell group.  相似文献   

3.
Dopamine (DA) release from nerve terminals of the nigrostriatal DA neurons not only depends on the activity of nigral DA cells but also on presynaptic regulation. Glutamatergic neurons of cortical origin play a prominent role in these presynaptic regulations. The direct glutamatergic presynaptic control of DA release is mediated by N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) receptors, located on DA nerve terminals. In addition, by acting on striatal target cells, these glutamatergic neurons contribute also to indirect regulations of DA release involving several transmitters such as GABA, acetylcholine and neuropeptides. Diffusible messengers such as nitric oxide (NO) or arachidonic acid (AA) which are particularly formed under the stimulation of NMDA receptors may also participate to the regulation of DA release. In the present study, it will be shown that the co-application of NMDA and carbachol synergistically increases the release of [3H]-DA and that this effect is reduced by mepacrine or 4-bromophenacylbromide (10(-7) M), two inhibitors of PLA2. Therefore endogenously released AA induced by the co-stimulation of NMDA and cholinergic receptors seems to be involved, at least partly, in the release of DA.  相似文献   

4.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

5.
We have explored the role of excitatory amino acids in the increased dopamine (DA) release that occurs in the neostriatum during stress-induced behavioral activation. Studies were performed in awake, freely moving rats, using in vivo microdialysis. Extracellular DA was used as a measure of DA release; extracellular 3,4-dihydroxyphenylalanine (DOPA) after inhibition of DOPA decarboxylase provided a measure of apparent DA synthesis. Mild stress increased the synthesis and release of DA in striatum. DA synthesis and release also were enhanced by the intra-striatal infusion of N-methyl-D-aspartate (NMDA), an agonist at NMDA receptors, and kainic acid, an agonist at the DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA)/kainate site. Stress-induced increase in DA synthesis was attenuated by co-infusion of 2-amino-5-phosphonovalerate (APV) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), antagonists of NMDA and AMPA/kainate receptors, respectively. In contrast, intrastriatal APV, CNQX, or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) did not block the stress-induced increase in DA release. Stress-induced increase in DA release was, however, blocked by administration of tetrodotoxin along the nigrostriatal DA projection. It also was attenuated when APV was infused into substantia nigra. Thus, glutamate may act via ionotropic receptors within striatum to regulate DA synthesis, whereas glutamate may influence DA release via an action on receptors in substantia nigra. However, our method for monitoring DA synthesis lowers extracellular DA and this may permit the appearance of an intra-striatal glutamatergic influence by reducing a local inhibitory influence of DA. If so, under conditions of low extracellular DA glutamate may influence DA release, as well as DA synthesis, by an intrastriatal action. Such conditions might occur during prolonged severe stress and/or DA neuron degeneration. These results may have implications for the impact of glutamate antagonists on the ability of patients with Parkinson's disease to tolerate stress.  相似文献   

6.
The present study was undertaken to determine whether basal and stimulus-activated dopamine release in the prefrontal cortex (PFC) is regulated by glutamatergic afferents to the PFC or the ventral tegmental area (VTA), the primary source of dopamine neurons that innervate the rodent PFC. In awake rats, blockade of NMDA or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors in the VTA, or blockade of AMPA receptors in the PFC, profoundly reduced dopamine release in the PFC, suggesting that the basal output of dopamine neurons projecting to the PFC is under a tonic excitatory control of NMDA and AMPA receptors in the VTA, and AMPA receptors in the PFC. Consistent with previous reports, blockade of cortical NMDA receptors increased dopamine release, suggesting that NMDA receptors in the PFC exert a tonic inhibitory control on dopamine release. Blockade of NMDA or AMPA receptors in the VTA as well as blockade of AMPA receptors in the PFC reduced the dopaminergic response to mild handling, suggesting that activation of glutamate neurotransmission also regulates stimulus-induced increase of dopamine release in the PFC. In the context of brain disorders that may involve cortical dopamine dysfunction, the present findings suggest that abnormal basal or stimulus-activated dopamine neurotransmission in the PFC may be secondary to glutamatergic dysregulation.  相似文献   

7.
Parkinsonism is a feature of a number of neurodegenerative diseases, including Parkinson's disease, multiple system atrophy and progressive supranuclear palsy. The results of post-mortem studies point to dysfunction of the dopaminergic neurotransmitter system in patients with parkinsonism. Nowadays, by using single-photon emission tomography (SPET) and positron emission tomography (PET) it is possible to visualise both the nigrostriatal dopaminergic neurons and the striatal dopamine D2 receptors in vivo. Consequently, SPET and PET imaging of elements of the dopaminergic system can play an important role in the diagnosis of several parkinsonian syndromes. This review concentrates on findings of SPET and PET studies of the dopaminergic neurotransmitter system in various parkinsonian syndromes.  相似文献   

8.
Activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is implicated in the pathophysiology of traumatic brain injury. Here, the effects of mechanical injury on the voltage-dependent magnesium (Mg2+) block of NMDA currents in cultured rat cortical neurons were examined. Stretch-induced injury was found to reduce the Mg2+ blockade, resulting in significantly larger ionic currents and increases in intracellular free calcium (Ca2+) concentration after NMDA stimulation of injured neurons. The Mg2+ blockade was partially restored by increased extracellular Mg2+ concentration or by pretreatment with the protein kinase C inhibitor calphostin C. These findings could account for the secondary pathological changes associated with traumatic brain injury.  相似文献   

9.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

10.
The idea that astrocytes merely provide structural and trophic support for neurons has been challenged by the demonstration that astrocytes can regulate neuronal calcium levels. However, the physiological consequences of astrocyte-neuron signalling are unknown. Using mixed cultures of rat hippocampal astrocytes and neurons we have determined functional consequences of elevating astrocyte calcium levels on co-cultured neurons. Electrical or mechanical stimulation of astrocytes to increase their calcium level caused a glutamate-dependent slow inward current (SIC) in associated neurons. Microinjection of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) into astrocytes to prevent the stimulus-dependent increase in astrocyte calcium level, blocks the appearance of the neuronal SIC. Pharmacological manipulations indicate that this astrocyte-dependent SIC is mediated by extracellular glutamate acting on N-methyl-D-aspartate (NMDA) and non-NMDA glutamate receptors. Additionally, stimulation of astrocytes reduced the magnitude of action potential-evoked excitatory and inhibitory postsynaptic currents through the activation of metabotropic glutamate receptors. The demonstration that astrocytes modulate neuronal currents and synaptic transmission raises the possibility that astrocytes play a neuromodulatory role by controlling the extracellular level of glutamate.  相似文献   

11.
The degeneration or dysfunction of cholinergic neurons within the basal forebrain of patients with Alzheimer's disease (AD) may be related to the vulnerability of these cells to endogenous glutamate (Beal, 1995; Greenamyre and Young, 1989). The administration of drugs that attenuate the toxic actions of glutamate in the early stages of the disease might significantly delay its rate of progression. Two approaches to neuroprotection from endogenous glutamatergic function were investigated and found to be effective: blockade of voltage-dependent, NMDA-type glutamate receptor channels and antagonism of an NMDA-receptor related glycineB modulatory site.  相似文献   

12.
Amyloid beta-protein (Abeta), a putative pathogenic endotoxin involved in Alzheimer's disease, induces redistribution of glutamate transporters in astrocytes and promotes their pump activity. Because the transporters are assumed to protect neurons against excitotoxicity by removing extracellular glutamate, we hypothesized that Abeta alters the vulnerability of neurons to glutamate. Cerebrocortical neuron-astroglial co-cultures were exposed to glutamate, the concentration of which was selected so that only 20% of the neurons exhibited degeneration. When cultures were pre-treated with Abeta, exposure to the same "mild" glutamate concentration failed to damage neurons. The Abeta-induced protection was abolished by a glial glutamate transporter inhibitor. Thus, Abeta can alleviate excitotoxicity through glutamate transporter activity. The present results may challenge prevailing concepts that Abeta-induced neuron loss causes Alzheimer's dementia and also provide practical insights into neuro-glial interactions in glutamate toxicity.  相似文献   

13.
6-Hydroxydopamine-induced nerve terminal lesion of the nigrostriatal system may provide a partial lesion model of Parkinson's disease useful for the assessment of neuroprotective treatments and behavioral recovery after therapeutic intervention. The aim of the present study was to assess the retrograde degenerative changes in the dopaminergic neurons of the substantia nigra and the associated behavioral and neurochemical consequences of intrastriatal injections of 6-hydroxydopamine in young adult rats. Four groups of rats were stereotaxically injected in the right striatum with graded doses of 6-hydroxydopamine ranging from 0 to 20 mu g. Structural and functional deficits were quantified by tyrosine hydroxylase-immunoreactive nigral cell numbers, striatal dopamine content, skilled paw use, and drug-induced rotation. The results show that striatal 6-hydroxydopamine lesions produce dose-dependent decreases in striatal dopamine levels and tyrosine hydroxylase-immunoreactive cell numbers in the ipsilateral substantia nigra, accompanied by a significant long-lasting atrophy of the remaining dopaminergic neurons. Paw reaching test scores on the side contralateral to the lesion were non-linearly correlated with dopaminergic neuronal cell loss and exhibited a clear symptomatic threshold such that impaired paw use appeared only after >50% loss of nigral dopamine neurons or a reduction of 60-80% of striatal dopamine levels. The behavioral, cellular, and neurochemical effects of the nerve terminal lesion thus bear some resemblance to the early stages of Parkinson's disease, where the severity of motor impairment is correlated with the loss of dopamine in the striatum and dopaminergic neuronal loss in the substantia nigra. Rats with intrastriatal 6-hydroxydopamine lesions thus provide a model of progressive dopamine neuron degeneration useful not only for the exploration of neuroprotective therapeutic intervention but also for the study of mechanisms of functional and structural recovery after subtotal damage of the nigrostriatal dopamine system.  相似文献   

14.
It has been suggested that degeneration of neurons in Alzheimer's disease is the result of diminished trophic support. However, so far no evidence has been forwarded that neuronal degeneration in Alzheimer's disease is causally related to insufficient production of neurotrophins. The present study deals with (i) the expression and co-localization of tyrosine kinase receptors (trks) in the human nucleus basalis of Meynert and (ii) alterations of these receptors in Alzheimer's disease in the nucleus basalis of Meynert, an area severely affected in Alzheimer's disease. The expression of trkA, trkB and trkC in the nucleus basalis of Meynert of control and Alzheimer's disease brains was studied using three polyclonal antibodies specifically recognizing the extracellular domain of trkA, trkB and trkC. Brain material of eight controls and seven Alzheimer's disease patients was obtained at autopsy, embedded in paraffin and stained immunocytochemically. Using an image analysis system, we determined the proportion of trk neurons expressing the different trk receptors in controls and Alzheimer's disease patients. In control brains, trkA, trkB and trkC were differentially expressed in numerous nucleus basalis of Meynert neurons. The highest proportion of neurons was found to express trkB (75%), followed by trkC (58%) and trkA (54%). Furthermore, using consecutive sections, a clear co-localization of trk receptors was observed in the same neurons. The highest degree of co-localization was observed between trkA and trkB. In Alzheimer's disease patients, the number of immunoreactive neurons and the staining intensity of individual neurons was reduced dramatically. Reduction in the proportion of neurons expressing trkA was 69%, in trkB 47% and in trkC 49%, which indicated a differential reduction in the amount of trk receptors in Alzheimer's disease. These observations indicate that nucleus basalis of Meynert neurons can be supported by more than one neurotrophin and that the degeneration of these neurons in Alzheimer's disease is associated with a decreased expression of trk receptors, suggesting a decreased neurotrophin responsiveness of nucleus basalis of Meynert neurons in Alzheimer's disease.  相似文献   

15.
Previous work with recombinant receptors has shown that the identity of the NMDA NR2 subunit influences receptor affinity for both glutamate and glycine. We have investigated the developmental change in NMDA receptor affinity for both glutamate and glycine in acutely dissociated parietal cortex neurons of the rat, together with the expression during ontogeny of NR2A and NR2B mRNA and protein. Whereas there is little change in NMDA receptor glutamate affinity with age, a population of NMDA receptors emerges in 14- and 28-d-old animals with a markedly reduced affinity for glycine (mKD = approximately 800 nM) and a reduced sensitivity to the NR2B subunit-selective NMDA antagonist ifenprodil. These changes are paralleled by a developmental increase in the expression of NR2A. Thus, in mature animals a population of NMDA receptors appears with a lower affinity for glycine that might not be saturated under normal physiological conditions. Ifenprodil (10 microM) inhibits virtually all of the NMDA receptor-evoked current in very young neurons that contain a single population of receptors exhibiting a high affinity for glycine (mKD = approximately 20 nM). In older neurons, which contain NMDA receptors with both high and low affinities for glycine, ifenprodil (10 microM) inhibits both the high-affinity population and a significant proportion of the low-affinity component, thus revealing three pharmacologically distinct populations of NMDA receptors in single neurons. Moreover, these observations suggest that ifenprodil might bind with high affinity to NMDA receptors containing both NR2A and NR2B subunits as well as those containing only NR2B.  相似文献   

16.
Dopamine (DA) and related catechols may contribute to selective degeneration of dopaminergic neurons in the substantia nigra in Parkinson's disease. To investigate whether DA induces apoptosis of dopaminergic neurons, we characterized the effects of various concentrations of exogenous DA on a substantia nigra/neuroblastoma hybrid cell line (MES 23.5 or MES). The hybrid MES cells were maintained in the presence of 50 microM glutamate in logarithmic growth on poly-D-lysine-precoated T-75 flasks and plated either onto petri dishes with glass coverslips for morphological studies or onto 6-well plates for quantification of apoptosis by flow cytometry. The results showed that DA exposure (0.5-20 microM) induced time- and dose-dependent apoptotic cell death of MES cells. To further analyze the mechanism responsible for DA-mediated apoptosis, we repeated the experiments at 20 microM DA in the presence or absence of 40 microM nomifensine, a DA re-uptake inhibitor, and 25 microM 2-amino-5-phosphonopentanoic acid (AP5), an N-methyl-D-aspartate (NMDA) receptor antagonist. The data indicate that both compounds significantly prevented DA-induced apoptosis of MES cells and that combination of AP5 and nomifensine provided greater protection against DA toxicity than AP5 alone. These results suggest for the first time that DA-induced apoptosis in dopaminergic neurons is partially attributable to increased vulnerability of these cells to non-toxic levels of excitatory amino acids, i.e., secondary excitotoxicity.  相似文献   

17.
Interactions between dopamine and glutamate play prominent roles in memory, addiction, and schizophrenia. Several lines of evidence have suggested that the ventral midbrain dopamine neurons that give rise to the major CNS dopaminergic projections may also be glutamatergic. To examine this possibility, we double immunostained ventral midbrain sections from rat and monkey for the dopamine-synthetic enzyme tyrosine hydroxylase and for glutamate; we found that most dopamine neurons immunostained for glutamate, both in rat and monkey. We then used postnatal cell culture to examine individual dopamine neurons. Again, most dopamine neurons immunostained for glutamate; they were also immunoreactive for phosphate-activated glutaminase, the major source of neurotransmitter glutamate. Inhibition of glutaminase reduced glutamate staining. In single-cell microculture, dopamine neurons gave rise to varicosities immunoreactive for both tyrosine hydroxylase and glutamate and others immunoreactive mainly for glutamate, which were found near the cell body. At the ultrastructural level, dopamine neurons formed occasional dopaminergic varicosities with symmetric synaptic specializations, but they more commonly formed nondopaminergic varicosities with asymmetric synaptic specializations. Stimulation of individual dopamine neurons evoked a fast glutamatergic autaptic EPSC that showed presynaptic inhibition caused by concomitant dopamine release. Thus, dopamine neurons may exert rapid synaptic actions via their glutamatergic synapses and slower modulatory actions via their dopaminergic synapses. Together with evidence for glutamate cotransmission in serotonergic raphe neurons and noradrenergic locus coeruleus neurons, the present results suggest that glutamatergic cotransmission may be the rule for central monoaminergic neurons.  相似文献   

18.
Excessive stimulation of the N-methyl-d-aspartate (NMDA)-type glutamate receptor has been implicated in the neuronal death resulting from focal hypoxia-ischemia. Certain neurosteroids, steroids synthesized de novo in the central nervous system (CNS), have been shown to modulate the action of neurotransmitters at their cellular receptors. Pregnenolone sulfate (PS) is an abundant neurosteroid that enhances the current evoked by NMDA. Using the Ca2+-sensitive fluorescent dye, Fluo-3, AM, and a trypan blue exclusion assay, we evaluated the ability of PS to modulate NMDA-induced changes in intracellular free calcium concentration ([Ca2+]i) and neuronal death in primary cultures of rat hippocampal neurons. The results demonstrate that PS potentiates NMDA-induced increases in [Ca2+]i by 150%. Further, PS exacerbates the MK-801-sensitive neuronal death produced by acute (PS EC50=37 microM) or chronic NMDA exposure, reducing the EC50 of NMDA from 13 to 4 microM under chronic exposure conditions, whereas pregnenolone is ineffective. Our results show that PS, or related sulfated neurosteroids, may play a role in the onset of excitotoxic neuronal death in vivo.  相似文献   

19.
Synaptic NMDA-type glutamate receptors are anchored to the second of three PDZ (PSD-95/Discs large/ZO-1) domains in the postsynaptic density (PSD) protein PSD-95. Here, we report that citron, a protein target for the activated form of the small GTP-binding protein Rho, preferentially binds the third PDZ domain of PSD-95. In GABAergic neurons from the hippocampus, citron forms a complex with PSD-95 and is concentrated at the postsynaptic side of glutamatergic synapses. Citron is expressed only at low levels in glutamatergic neurons in the hippocampus and is not detectable at synapses onto these neurons. In contrast to citron, p135 SynGAP, an abundant synaptic Ras GTPase-activating protein that can bind to all three PDZ domains of PSD-95, and Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) are concentrated postsynaptically at glutamatergic synapses on glutamatergic neurons. CaM kinase II is not expressed and p135 SynGAP is expressed in less than half of hippocampal GABAergic neurons. Segregation of citron into inhibitory neurons does not occur in other brain regions. For example, citron is expressed at high levels in most thalamic neurons, which are primarily glutamatergic and contain CaM kinase II. In several other brain regions, citron is present in a subset of neurons that can be either GABAergic or glutamatergic and can sometimes express CaM kinase II. Thus, in the hippocampus, signal transduction complexes associated with postsynaptic NMDA receptors are different in glutamatergic and GABAergic neurons and are specialized in a way that is specific to the hippocampus.  相似文献   

20.
Fast chemical neurotransmission is dependent on ionotropic receptors that are concentrated and immobilized at specific postsynaptic sites. The mechanisms of receptor clustering and anchoring in neuronal synapses are poorly understood but presumably involve molecular linkage of membrane receptor proteins to the postsynaptic cytoskeleton. Recently the actin-binding protein alpha-actinin-2 was shown to bind directly to the NMDA receptor subunits NR1 and NR2B (), suggesting that alpha-actinin-2 may function to attach NMDA receptors to the actin cytoskeleton. Here we show that alpha-actinin-2 is localized specifically in glutamatergic synapses in cultured hippocampal neurons. By immunogold electron microscopy, alpha-actinin-2 is concentrated over the postsynaptic density (PSD) of numerous asymmetric synapses where it colocalizes with NR1 immunoreactivity. Thus alpha-actinin-2 is appropriately positioned at the ultrastructural level to function as a postsynaptic-anchoring protein for NMDA receptors. alpha-Actinin-2 is not, however, exclusively found at the PSD; immunogold labeling was also associated with filaments and the spine apparatus of dendritic spines and with microtubules in dendritic shafts. alpha-Actinin-2 showed marked differential regional expression in rat brain. For instance, the protein is expressed at much higher levels in dentate gyrus than in area CA1 of the hippocampus. This differential regional expression implies that glutamatergic synapses in various parts of the brain differ with respect to their alpha-actinin-2 content and thus, potentially, the extent of possible interaction between alpha-actinin-2 and the NMDA receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号