首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon carbide-based fiber-bonded ceramics, obtained from hot pressing of woven silicon carbide fibers, are a cost-effective alternative to ceramic-matrix composites due to their ease of fabrication, involving few processing steps, and competitive thermomechanical properties. In this work, we studied the high-temperature strength and thermal shock resistance of Si-Al-C-O and Si-Ti-C-O fiber-bonded SiC ceramics obtained from hot pressing of two types of ceramic fibers, by mechanical testing in four-point bending. The bending strength of Si-Al-C-O-based fiber-bonded ceramics at room temperature is ∼250–260 MPa and remains constant with temperature, while the bending strength of Si-Ti-C-O increases slightly from the initial 220 to ∼250 MPa for the highest temperature. Both materials retain up to 90% of their room temperature strength after thermal shocks of 1400°C and show no reduction in elastic moduli. After thermal shock, failure mode is the same as in the case of as-received materials.  相似文献   

2.
For lowering the sintering temperature of silicon carbide ceramics used for solar thermal energy storage technology, O'‐Sialon and silicon nitride were employed as composite phases to construct Sialon‐Si3N4‐SiC composite ceramics. The composite ceramics were synthesized using SiC, Si3N4, quartz, and different alumina sources as starting materials with noncontact graphite‐buried sintering method. Influences of alumina sources on the physical properties and thermal shock resistance of the composites were studied. The results revealed that the employment of O'‐Sialon and silicon nitride could decrease the sintering temperature greatly to 1540°C. The optimum formula G2 prepared from mullite as alumina source achieved the best performances: 66.7 MPa of bending strength, 10.0 W/(m·K) of thermal conductivity. The composition parameter x = 0.4 of O'‐Sialon decreased to 0.04 after 30 cycles thermal shock, and the bending strength increased with a rate of 11.0% due to the increase of O'‐Sialon grain size, and the optimization of microstructure caused by the transformation of O'‐Sialon grains and densification within the samples. The good thermal shock resistance makes the composites suitable for the use as thermal storage materials of concentrated solar power generation.  相似文献   

3.
The effect of the heat treatment on the toughness and thermal shock resistance of the silicon carbide–silicon nitride composites prepared by liquid-phase-sintering was investigated. The fracture toughness has been estimated using the indentation method and the thermal shock resistance was studied using the indentation-quench method. The results were compared to those obtained for a reference silicon carbide material, prepared by the same fabrication route. The indentation toughness increased from 2.88 to 5.39 MPa m1/2 due to the toughening mechanisms (crack deflection, mechanical interlocking and crack branching) occurring in the heat-treated materials during the crack propagation. Similarly the thermal shock resistance increased after the heat treatment of the experimental materials.  相似文献   

4.
《Ceramics International》2021,47(19):26643-26650
In order to improve the thermal shock resistance of MgO-based ceramics, aluminum titanate (Al2TiO5)-toughened MgO-based ceramics were successfully prepared by solid state sintering at 1450 °C and 1550 °C for 3 h starting from MgO and as-synthesized Al2TiO5 powders. The effects of various contents of Al2TiO5 second phase on the sintering behavior and thermal shock resistance of MgO-based ceramics were investigated. The sintering behavior of sintered samples was evaluated by comparing the relative density, apparent porosity, bending strength, phase composition as well as microstructure. The thermal shock resistance of sintered samples was characterized by using the residual bending strength after three thermal cycles and thermal expansion coefficient. The obtained samples with 10 wt% Al2TiO5, which were sintered at 1550 °C for 3 h, showed the highest relative density, lowest apparent porosity as well as optimum bending strength. In addition, the samples added 15 wt% Al2TiO5 at 1550 °C with a dwell time of 3 h were the highest residual bending strength and lowest thermal expansion coefficient. It revealed that the enhancement in thermal shock resistance was ascribed to the reduction of thermal expansion coefficient.  相似文献   

5.
《Ceramics International》2020,46(3):2910-2914
Porous silicon-bonded silicon carbide (SBSC) ceramics were prepared under argon atmosphere, with silicon as pore former and bonding material, simultaneously, sodium dodecyl benzene sulfonate (SDBS) and ZrO2 as sintering additives, the effects of SDBS and ZrO2 on the porosity, pore size, mechanical, physical and thermal properties and microstructures were investigated. The results suggested that suitable content of SDBS and ZrO2 could not only effectively lower the sintering temperature to 1450 °C due to the sticky flow of molten silicon, but also increase the pore structure and improve the bending strength. The reason for this is that SDBS decomposed into Na2O which reacted with ZrO2 and impurity SiO2, which was the native oxide film on the surface of SiC particles, to form a bonding phase between SiC particles to improve the bending strength; meanwhile, the disappearances of impurity SiO2 would benefit the bond of molten silicon and silicon carbide particles, and silicon melt leaving pores in its original position to increase the pore structure. The optimal apparent porosity, bending strength, average pore size, gas permeance and residual bending strength after thermal shock cycles of SBSC porous ceramic sintered at 1450 °C with 5 wt% SDBS and 6 wt% ZrO2 were 38.33%, 55.4 MPa, 11.3 μm, 106.4 m3/m2·h·kPa and 28.2 MPa, respectively.  相似文献   

6.
《Ceramics International》2017,43(4):3741-3747
Silicon carbide reticulated porous ceramics (SiC RPCs) with three-layered struts were fabricated by polymer replica method, followed by infiltrating alumina slurries containing silicon (slurry-Si) and andalusite (slurry-An), respectively. The effects of composition of infiltration slurries on the strut structure, mechanical properties and thermal shock resistance of SiC RPCs were investigated. The results showed that the SiC RPCs infiltrated with slurry-Si and slurry-An exhibited better mechanical properties and thermal shock resistance in comparison with those of alumina slurry infiltration, even obtained the considerable strength at 1300 °C. In slurry-Si, silicon was oxidized into SiO2 in the temperature range from 1300 °C to 1400 °C and it reacted with Al2O3 into mullite phase at 1450 °C. Meantime, the addition of silicon in slurry-Si could reduce SiC oxidation of SiC RPCs during firing process in contrast with alumina slurry. With regard to slurry-An, andalusite started to transform into mullite phase at 1300 °C and the secondary mullitization occurred at 1450 °C. The enhanced mechanical properties and thermal shock resistance of SiC RPCs infiltrated alumina slurries containing silicon and andalusite were attributed to the optimized microstructure and the triangular zone (inner layer of strut) with mullite bonded corundum via reaction sintering. In addition, the generation of residual compressive stress together with better interlocked needle-like mullite led to the crack-deflection in SiC skeleton, thus improving the thermal shock resistance of obtained SiC RPCs.  相似文献   

7.
周剑  江倩  杨怡  冯厦厦  仲兆祥  邢卫红 《化工学报》2021,72(4):2293-2299
分别采用十二烷基苯磺酸钠、氢氧化钠以及NaA分子筛残渣为烧结助剂,碳粉为造孔剂,干压法成型,在1150℃空气气氛下烧结制备碳化硅多孔陶瓷支撑体。考察了助剂添加量对微结构、平均孔径、孔隙率以及抗热震性等方面的影响;分析了添加助剂的低温烧成机理。研究结果表明:三种添加剂均有助于提高支撑体的气体渗透性、抗弯强度和耐热震性;添加NaA分子筛残渣助烧结剂获得的碳化硅多孔陶瓷各项性能最佳,气体渗透率为1300 m3/(m2·h·kPa),强度可达27 MPa,且抗热震性能良好。  相似文献   

8.
In this paper, spodumene/mullite ceramics with good thermal shock resistance were prepared from spodumene, quartz, talc, and clay when the sintering temperature was 1270℃. In the sintering process, the effect of holding time on densification, mechanical properties, phase transformation, microstructure, and thermal shock resistance of the composite ceramics were investigated. The phase transition and microstructures of the ceramics were identified via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The interaction between holding time and bulk density was studied by response surface methodology. The result show that an appropriate holding time can improve the mechanical properties of spodumene/mullite ceramics. When the holding time was kept 90 min, the spodumene/mullite ceramics with the apparent porosity was .47%, the bulk density was 2.28 g/cm3, and bending strength was 63.46 MPa. Furthermore, since no cracks formed after 20 thermal shock cycles for the composite ceramics with a bending strength decreasing rate of 12.66%, it is revealed that spodumene/mullite ceramics exhibit good thermal shock resistance. Therefore, this study can provide beneficial guidance for both industrial production and energy conservation.  相似文献   

9.
High-performance cellular foams with superior mechanical properties and heat resistance are urgently needed to fulfill the applications in extreme environments. However, they are difficult to be prepared because of low gas diffusion rate in high-performance polymers. In this work, a facile solution-foaming strategy to prepare multifunctional foams based on poly(m-phenylene isophthalamide) (PMIA) is reported. The achieved PMIA foams show a hierarchically cellular structure containing macropores and mesopores. Due to their high porosity, the PMIA foams exhibit low thermal conductivity (0.0447–0.0498 W m−1 K−1) and high sound absorption coefficient at different frequency. A bimodal distribution on acoustic absorption is observed. With a bulk density range of 0.089–0.122 g cm−3, PMIA foams possess compressive moduli of 3.2–14.2 MPa and bending strength of 1.1–2.1 MPa, respectively. Moreover, they exhibit a recoverable deformation of 55.4% after 10 cycling 10% strain compressions and maintain a dimensional stability under harsh environment (–196 to 250 °C). Despite generated byproducts like polyurea, they still show a limiting oxygen index (25.2–26.3%) and relatively low heat release rate (178.3 kW m−2). This work provides a facile strategy to efficiently prepare high-performance PMIA foams for broad application prospects.  相似文献   

10.
《Ceramics International》2016,42(12):13525-13534
Cordierite-mullite-corundum composite ceramics for solar heat transmission pipeline were fabricated via pressureless sintering at a low sintering temperature with added Sm2O3. The effects of Sm2O3 on sintering behaviors, mechanical property, phase transformation, microstructure, thermal shock resistance and thermal conductivity of the composite ceramics were investigated. TEM analysis results demonstrated that Sm3+ located in glass and grain boundaries to facilitate the densification via the liquid-phase sintering mechanism and improve bending strength by grain refinement, respectively. Proper addition (3 wt%) of Sm2O3 could promote the crystallization of cordierite, and improve thermal shock resistance of the composite ceramics with an increasing rate of 16.70% for bending strength after 30 thermal shock cycles (air cooling from 1100 °C to RT). The composite ceramics possessed a superior thermal shock resistance, where a large amount of particles were formed to suppress crack initiation and propagation during thermal shock. Cordierite-mullite-corundum composite ceramics with proper Sm2O3 addition (3 wt%) had a lower thermal conductivity than that of composite ceramics without Sm2O3 addition by strengthening the scattering of phonon, which could reduce the heat loss during solar heat transmission process.  相似文献   

11.
多孔碳化硅陶瓷的抗热震性研究   总被引:1,自引:0,他引:1  
朱玉梅  靳正国 《陶瓷学报》1998,19(4):213-216
本文考察了多了孔碳化硅陶瓷的抗热震性,并探讨了不同制造工艺对多孔碳化硅陶瓷抗热震性的影响。同时研究了SiC陶瓷在热处理过程中SiC颗粒表面氧化形成的SiO2在不同热处理温度的状态变化及其对试样抗热震性的影响。  相似文献   

12.
《Ceramics International》2017,43(2):1762-1767
Corundum-mullite composite ceramics have high hardness, small plastic deformation and other excellent performances at high temperature. Corundum-mullite composite ceramics were fabricated from andalusite and α-Al2O3 by in-situ synthesis technology. Effects of mullite/corundum ratio and sintering temperatures on the water absorption, apparent porosity, bulk density, bending strength, thermal shock resistance, phase composition and microstructure of the sample were investigated. Results indicated that the in-situ synthesized mullite from andalusite combined with corundum satisfactorily, which significantly improved the thermal shock resistance as no crack formed after 30 cycles of thermal shock (1100 °C-room temperature, air cooling). Formula A4 (andalusite: 37.31 wt%, α-Al2O3: 62.69 wt%, TiO2 in addition: 1 wt%, mullite: corundum=6:4 in wt%) achieved the optimum properties when sintering at 1650 °C, which were listed as follows: water absorption of 0.15%, apparent porosity of 0.42%, and bulk density of 3.21 g⋅cm−3, bending strength of 117.32 MPa. The phase composition of the sintered samples before and after thermal shock tests were mullite and corundum constantly. The fracture modes of the crystals were transgranular and intergranular fractures, which could endow the samples with high thermal shock resistance.  相似文献   

13.
朱丽慧  黄清伟 《耐火材料》2001,35(4):202-204
通过对比不同温差热震后材料的残余强度 ,对反应烧结碳化硅材料的抗热震性能进行了研究。结果表明 :反应烧结碳化硅材料的抗热震性能与显微组织密切相关 ,低游离硅含量与小粒径的反应烧结碳化硅材料具有较好的抗热震断裂性能 ,而高游离硅含量或大碳化硅粒径的材料具有相对优异的抗热震损伤性。对反应烧结碳化硅材料的抗热震性与显微组织的关系进行了探讨。  相似文献   

14.
《Ceramics International》2016,42(4):4723-4733
A method for processing carbon foams containing both silicon carbide (SiC) nanowires and bulk SiC and silicon nitride (Si3N4) phases has been developed by reaction of powder mixtures containing precursors for carbon, sacrificial template, silicon (Si), short carbon fibers (SCF) and activated carbon (AC). In situ growth of Si nanowires during pyrolysis of the foam at 1000 °C under N2 changed the foam׳s microstructure by covering the porous skeleton inside and out. In situ-grown SiC nanowires were found smoothly curved with diameters ranging around two main modes at 30 and 500 nm while their lengths were up to several tens of micrometers. SCF were found effectively mixed and well-bonded to pore walls. Following density, porosity and pore size distribution analyses, the heat-treated (HT) foam was densified using a chemical vapor infiltration (CVI) process. Thereafter, density increased from 0.62 to 1.30 g/cm3 while flexural strength increased from 29.3 to 49.1 MPa. The latter increase was attributed to the densification process as well as to low surface defects, presence of SCF and coating, by SiC nanowires, of the entire SiC matrix porous structure. The foam׳s oxidation resistance improved significantly from 58 to 84 wt% residual mass of the heat treated and densified sample. The growth mechanism of Si nanowires was supported by the vapor–liquid–solid mechanism developed under pyrolysis conditions of novolac and reducing environment of coal cover.  相似文献   

15.
The objective of this work was to study the effect of the kaolin content on the properties of starch foams. The kaolin/starch foams were made with kaolin contents that ranged from 0 to 15 m% by baking in a hot mold. The starch and kaolin/starch foams were stored at room temperature with a relative humidity (RH) of 55% for 7 days prior to testing. An increase in the kaolin content increased the foam density. The izod impact strength increased up to 1151.37 J/m2 at the highest kaolin content (15 m%). The improvement was about five times the izod impact strength of pure starch foam. Moreover, the presence of any kaolin reduced the water absorption ability of the starch foam. Scanning electron microscopy revealed that kaolin increased the size of the starch foam cells and was itself well dispersed. Kaolin/starch foams showed a higher thermal stability than pure starch foam.  相似文献   

16.
《Ceramics International》2016,42(12):13547-13554
Cordierite-spodumene composite ceramics with 5, 10, 15 wt% spodumene used for solar heat transmission pipeline were in-situ prepared via pressureless sintering from kaolin, talc, γ-Al2O3 and spodumene. Effects of spodumene on densification, mechanical properties, thermal shock resistance, phase composition and microstructure of the composite ceramics were investigated. The results showed that spodumene used as flux material decreased the sintering temperature greatly by 40–80 °C, and improved densification and mechanical properties of the composite ceramics. Especially, sample A3 with 10 wt% spodumene additive sintered at 1380 °C exhibited the best bending strength and thermal shock resistance. The bending strengths of A3 before and after 30 thermal shock cycles (wind cooling from 1100 °C to room temperature) were 102.88 MPa and 96.29 MPa, respectively. XRD analysis indicated that the main phases of the samples before 30 thermal shock cycles were α-cordierite, α-quartz and MgAl2O4, and plenty of β-spodumene appeared after thermal shock. SEM micrographs illustrated that the submicron β-spodumene grains generated at the grain boundaries after thermal shock improved the thermal shock resistance. It is believed that the cordierite-spodumene composite ceramics can be a promising candidate material for heat transmission pipeline in the solar thermal power generation.  相似文献   

17.
Development of microporous magnesia based aggregates serving as working-line refractories have great significance in reducing energy loss and saving resource. Microporous magnesia-based aggregates were fabricated at 1780 °C by in-situ decomposition of magnesite with addition of nano-sized Al2O3. Intergranular MgAl2O4 phases formed in situ decreased the closed-pore size, thermal conductivity and improved the ceramic bonding and thermal shock resistance. Furthermore, the results suggested that pore size distribution was the dominate factor affecting thermal conductivity. Thermal contact resistance owing to networks of intergranular spinel in magnesia could improve thermal insulation performance effectively. The mismatch of thermal expansion coefficient between spinel and magnesia and the micro-scale closed pores enhanced thermal shock resistance by accommodating thermal stress and suppressing crack propagation. Microporous magnesia-based aggregates with 3 wt% nano-sized Al2O3 presented a mean pore size of 3.42 μm, thermal conductivity of 5.76 W m?1 k?1 (800 °C), a cold compressive strength of ~285 MPa, and a residual strength retention rate of 65.0% after thermal shock cycles. The low-conductivity microporous magnesia-based aggregates with excellent thermal shock resistance show promise for future application in working-lining lightweight refractories.  相似文献   

18.
Joining SiC ceramics with silicon resin YR3184   总被引:2,自引:0,他引:2  
Joints between reaction-bonded silicon carbide (RBSiC) and joints between pressureless sintered silicon carbide (SSiC) were produced respectively using a polysiloxane silicon resin (YR3184, GE Toshiba Silicones) as joining material. Samples were heat treated in a nitrogen flux at temperatures around 1200 °C. The maximum three point bending strength of the joints between reaction-bonded silicon carbide is 197 MPa. The maximum three point bending strength of the joints between sintered silicon carbide is 163 MPa. The join layers are continuous, homogeneous and densified and have thickness of 2–5 μm. The joining mechanism is that the amorphous silicon oxycarbide ceramic pyrolyzed from YR3184 acts as an inorganic adhesive.  相似文献   

19.
氮化硅结合碳化硅窑具的抗热震性能被破坏、不合理的支撑方式、承重变形因素导致其使用性能降低,影响了氮化硅结合碳化硅窑具的使用寿命。本研究制备了氮化硅结合碳化硅窑具,并结合生产实际主要研究了如何提高材料的抗氧化性、抗热震性以及其他高温理化性能,使氮化硅结合碳化硅窑具使用寿命延长。  相似文献   

20.
To obtain composite ceramics with excellent thermal shock resistance and satisfactory high?temperature service performance for solar thermal transmission pipelines, SiC additive was incorporated into Al2O3?mullite?ZrO2 composite ceramics through a pressureless sintering process. The effect of the SiC additive on thermal shock resistance was studied. Also, the variations in the microstructure and physical properties during thermal cycles at 1300 °C were discussed. The results showed that both thermal shock resistance and thermal cycling performance could be improved by adding 20 wt% SiC. In particular, the sample with 50 wt% Al2O3, 35 wt% Coal Series Kaolin (CSK), 15 wt% partially yttria?stabilized zirconia (PSZ), and 20 wt% SiC additional (denoted as sample A2) exhibited the best overall performance after firing at 1600 °C. Furthermore, the bending strength of sample A2 increased to 124.58 MPa, with an increasing rate of 13.63% after 30 thermal shock cycles. The increase in thermal conductivity and the formation of mullite were the factors behind the enhancement of thermal shock resistance. During the thermal cycles, the oxidation of SiC particles was favorable as it increased the microstructure densification and also facilitated the generation of mullite, which endowed the composite ceramics with a self?reinforcing performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号