首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
某水库工程拟在进行堆石料和过渡料填筑后再挖槽浇筑混凝土心墙.由于混凝土心墙高度达47.5m,心墙与周围土体的协调变位,以及蓄水后心墙内力分布是工程关注的问题.对5种不同刚度材料的心墙应力应变特征计算分析表明:不同材料心墙的最大沉降均出现在坝体中部高程附近,最大沉降量约-18.909 cm(占坝高40.5m的0.467%).柔性好的塑性混凝土与坝体协调变位最好,刚性混凝土C25心墙的坝体与心墙变形协调性最差.坝体及心墙应力极值随心墙模量降低而降低.刚性最大的C25心墙在覆盖层和基岩交界处应力值超标,拉应力最大值达到-6.0 MPa,呈现出显著的悬臂效应;而塑性混凝土变形协调性良好,心墙上下游面拉应力均小于-0.5 MPa,应力水平也最优.建议设计施工优先采用塑性混凝土方案,而若要采用C25混凝土作为心墙材料,则需要对心墙做好配筋设计.  相似文献   

2.
采用FLAC3D软件,对三板溪水电站混凝土面板堆石坝竣工期和蓄水期的变形与应力进行了数值模拟计算,结果表明,竣工期坝体最大铅直沉降量为110.20 cm,位于约1/2坝高处,沉降量约为坝高的0.54%;考虑蓄水期水压力作用后,在正常蓄水位、设计洪水位和校核洪水位下,最大沉降量为113.20、113.50、141.00 cm,最大沉降量为坝高的0.76%.通过对坝体变形和应力数值计算结果的分析以及坝体变形数值计算值与监测值的对比,说明坝体应力分布是合理的,符合大坝应力分布的一般规律.  相似文献   

3.
结合双江口高心墙堆石坝(坝高314m)工程实际,运用三维静力非线性有限元法,基于邓肯—张非线性弹性模型,对3种不同侧向围压计算方案分别模拟计算了双江口高心墙坝坝体的变位与应力,研究不同围压计算方案对坝体受力变形的影响。计算结果表明:侧向压力越大,坝体沉降以及坝体变位越小;不同围压方案对坝体主应力影响微弱,主应力值主要由坝体自重决定;各方案下双江口堆石坝坝体应力水平分布规律一致,量值变化不明显。   相似文献   

4.
为研究碾压式沥青混凝土心墙坝施工及运行期的受力特性,以新疆某水利枢纽工程为例,采用非线性邓肯-张E-B模型进行大坝三维有限元静力计算,采用等效线性粘弹性模型进行大坝三维有限元动力计算,采用三维等价结点力法研究坝体地震永久变形,主要研究坝体在静动力条件下坝体和防渗体的应力、变形以及基座与心墙的相对位移。结果表明,静力条件下,坝体最大沉降约占坝高的0. 27%,蓄水后心墙最大压应力较竣工期减少约14. 2%,蓄水后心墙顺河向最大位移较竣工期增大约2. 6倍、沿坝轴线方向减小约13. 3%;动力条件下,坝体地震沉降约占坝高的0. 09%,地震发生时坝体最大横断面心墙出现拉应力,其值约为最大压应力的9. 5%,地震结束后心墙最大压应力减小约16. 7%,未出现拉应力,地震后坝体顺河向发生永久位移,心墙最大压应力较地震前增大1. 9%,心墙顺河向最大位移较地震前增大约15. 4%、沿坝轴线方向减小约11. 5%。  相似文献   

5.
为研究面板堆石坝的沉降变形量值范围及变化规律,通过国内已投运的典型面板堆石坝实测沉降变形监测数据,统计、分析了不同坝高的大坝在施工期、运行期的沉降变形量值范围、分布规律及影响因素,结果表明:百米级面板堆石坝最大沉降量一般在坝高的1%以下,且其大小与坝高、填筑体抗压强度、施工工艺、施工质量等密切相关。研究成果能够为新建和已建工程运行期沉降变形安全监测提供有益指导。  相似文献   

6.
苗家坝混凝土面板堆石坝三维应力变形分析   总被引:1,自引:0,他引:1  
基于邓肯—张E-B模型,考虑坝体填筑施工和蓄水过程,并基于大型有限元软件ADINA平台,将三维子模型法应用于苗家坝面板堆石坝应力变形计算,并与监测资料和类似工程的计算结果作了对比分析。结果表明:子模型法能够大大减少网格数量,提高计算效率,面板及接缝的计算精度也有了提高;坝体最大沉降值约占坝高的1.1%,且沉降在竣工期已经基本完成;水库蓄水后,面板拉应力主要集中在面板与周边山体连接处,且最大拉应力均未超过2 MPa,建议通过增加面板的配筋,铺设粉煤灰或者细沙作为保护层来改善面板应力特性。周边缝变形最大值均未超过20 mm,止水结构不会因周边缝的变形过大而破坏。  相似文献   

7.
新疆阿尔塔什水利枢纽工程面板堆石坝坝高164.8 m,地基覆盖层最大厚度94 m,坝体和面板协调变形问题对大坝安全有重要影响。采用三维有限差分软件FLAC~(3D),对阿尔塔什水利枢纽工程深厚覆盖层面板堆石坝在施工期的应力变形进行了分析,结果表明:坝体最大沉降变形发生在1/3坝高位置;坝0+475剖面最大沉降量为0.55 m,覆盖层的变形量为0.32 m,覆盖层变形占坝体最大沉降变形的58%,河床深厚覆盖层产生的压缩变形对坝体的沉降变形影响较大;靠近坝轴线坝体沉降变形随填筑过程发展较快,高程1 680.0~1 736.0 m和高程1 736.0~1 752.0 m坝体填筑过程中沉降速度分别为2~3 cm/8 m和5~6 cm/8 m;数值计算结果与施工期实测沉降变形和变形特征较为吻合。后期施工和大坝运行过程中应对深厚覆盖层的变形加以关注,适当放慢施工进度,对于分期面板浇筑应适当预留一定沉降期。  相似文献   

8.
基于三维有限元非线性方法,考虑某高面板堆石坝面板分期施工浇筑的特点,建立精细模拟面板特性的子模型,用有厚度的接触面单元模拟坝体与面板的接触面,设置相应的连接单元模拟面板缝的相互作用,分析了该面板堆石坝在施工期和蓄水期坝体和面板的应力变形,并与类似坝高的面板堆石坝的计算或监测结果进行比较。结果表明:在施工期和蓄水期坝体的最大沉降值约为坝高的1%,位于次堆石区;面板应力以压应力为主,拉应力主要集中在面板与周边山体连接处;周边缝的最大错动剪切变形、最大张拉变形及最大沉降剪切变形均未超过30 mm。  相似文献   

9.
对寨子河沥青混凝土心墙堆石坝进行施工及运行期的渗流和坝体应力应变三维非线性有限元数值计算,结果表明:各工况的渗流规律基本相同,且沥青混凝土心墙和帷幕防渗效果良好;各工况的最大沉降均出现在坝体中部高程,最大沉降出现在竣工期,沉降量约-28.877cm(占坝高93m的0.31%);坝体正常运行时应力水平处于正常范围;沥青混凝土的配合比对坝体应力影响较小,3号和9号配合比均可作为施工配合比。  相似文献   

10.
文军  李榕  赵诗茹 《红水河》2012,31(3):38-42
斜卡面板堆石坝最大坝高110 m,坝基覆盖层深厚(45~108 m),基岩结构松散,渗透性较强。采用有限元法,对斜卡面板堆石坝及坝基进行了三维渗流及应力应变计算分析,讨论了帷幕厚度、深度与渗透系数对坝基渗流场的影响,分析了防渗墙在施工蓄水过程中的变形趋势以及趾板的沉降规律。结果表明,帷幕是防渗的薄弱环节,帷幕渗透系数增大与深度减小会使总流量显著增加;增大帷幕厚度可较大程度减小渗流量。防渗墙竣工期向上游变位,蓄水期受水推力作用向下游变形。防渗墙与连接板接合部位发生错动,但量值不大。  相似文献   

11.
袁志君 《四川水力发电》1999,18(3):25-27,30
地应力与坝基岩体稳定的关系是坝工建设中研究得较少的一个课题,笔者针对二滩电站坝区存在的高地应力现象,从初始应力场的建立,施工开挖的时效效应,直到与拱推力等外荷载作用下的对坝基岩体稳定的影响全过程进行了分析和计算。结果表明,高地应力虽然对基坑开挖有利影响,但对坝基岩体的抗滑稳定是有利的。  相似文献   

12.
二滩拱坝应力仿真及参数敏感性分析   总被引:1,自引:0,他引:1  
本文基于已有的二滩拱坝温度荷载和材料参数反馈分析结果,对该坝运行期的应力状态进行了仿真分析。研究发现,坝面最大拉应力与气温密切相关并随季节周期性变化,冬季时下游面左右岸最大主应力分布明显呈不对称分布,左岸基本上以压应力为主,而右岸则出现较大拉应力区,最大值可达到2MPa以上。材料参数和温度荷载敏感性分析表明,冬季时下游坝面右岸出现的较大拉应力是由于大坝右岸基岩蚀变带和右 岸下游坝面温度偏低所共同造成的,但蚀变带弹模的变化对坝体应力的影响是局部的,不致于对大坝的安全运行产生不利影响。  相似文献   

13.
拉西瓦水电站坝基地应力达30~70 MPa,坝基的开挖将会引起坝基回弹进而发生卸荷破坏,岩体质量下降,基础处理困难。因此,选择减轻坝基卸荷破坏程度的开挖型式是拉西瓦工程坝基开挖设计中研究的重要技术问题。文章介绍了拉西瓦拱坝坝基的地质和地应力环境;用平面非线性有限元、三维非线性有限元等不同的方法对平底开挖和反弧开挖等不同的坝基开挖型式进行了分析;对坝基开挖卸荷规律、应力屈服范围、坝基回弹数值等进行了研究。成果表明,采用光滑反弧型开挖,河谷应力集中区随坝基开挖向建基面下部转移,坝基开挖过程中未出现明显岩爆、剥离等高地应力现象;反弧型开挖较传统的平底开挖,坝基两侧应力集中现象、应力屈服范围等情况得到改善,坝基卸荷破坏有所减弱。为高地应力区的拱坝坝基开挖设计提供了可以借鉴的经验。  相似文献   

14.
中厚覆盖层上中低面板堆石坝应力变形分析   总被引:1,自引:0,他引:1  
在中厚覆盖层上修建中低面板堆石坝目前较为普遍,其应力变形特性与深厚覆盖层上修建的高面板坝有较大差异,因此有必要进行研究。利用目前应用较为广泛的邓肯-张E-B模型,采用二维有限元分析法针对位于宽河谷中的双溪口面板堆石坝竣工期及蓄水期的堆石体及面板的应力变形特性进行研究。结果表明:相比竣工期,蓄水期坝体沉降、向下游的水平位移、大坝大小主应力、应力水平及面板挠度均有所增加,其中以面板挠度及大坝水平位移增加最为明显,挠度增加了16.61 cm,水平位移增加约1倍,沉降增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。大坝在竣工期及蓄水期的应力及变形均在允许范围内,大坝运行正常。  相似文献   

15.
研究百米级浇筑式与碾压式沥青混凝土心墙坝的应力应变性态对沥青混凝土心墙高坝发展具 有重要意义。通过平面有限元分析表明:大坝的应力应变性态,明显受控于坝体填筑材料的性状,而受 心墙沥青混凝土材料性质影响较小,采用两种心墙材料所得大坝的应力变形规律变化不大。  相似文献   

16.
用厂坝连接解决大坝深层抗滑稳定问题   总被引:1,自引:0,他引:1  
本文以万家寨水电站为背景,研究了不同厂坝连接方式对坝体和厂房的应力、变形及深层抗滑稳定性的影响。研究结果表明,考虑混凝土重力坝与坝后式厂房的相互作用后,可以提高大坝抗滑稳定性,改善坝体应力状态,并能减小由于下游尾水过高引起厂房向上游的变形。  相似文献   

17.
高坝坝基挤压蚀变破碎带处理措施三维数值分析   总被引:1,自引:0,他引:1  
徐卫亚  孟国涛  江涛  杨清 《水利学报》2007,38(3):312-318
挤压蚀变破碎带是水电站坝基的主要工程地质问题。基于重力坝坝体与坝基岩体联合作用的数值模拟,分析了某水电站挤压蚀变破碎带G23对坝体应力和变形的影响。在对多种加固处理措施比较的基础上,提出了建议方案,说明了处理方案对拉应力的控制效果。进而,就建议方案所对应的数值模型,对G23带进行了浮值分析,用强度储备系数法计算了受G23带影响的坝基安全稳定性,检验了加固措施的合理性。研究结果,建议采取的坝体上游不贴角措施、G23带倾斜开挖置换5m、下游坝趾填角3~5m方案可以有效控制由于G23带不均匀沉降引起坝趾区的拉应力,使拉应力范围大大缩小的同时使得拉应力值降低至处理前的1/3以下。强度储备系数法得出正常荷载组合下各坝段安全储备系数均不低于2.5,重力坝的安全稳定性有充足的裕度。建议处理方案同时满足拉应力控制及稳定性要求。  相似文献   

18.
设底缝对高拱坝工作性态的影响   总被引:10,自引:0,他引:10  
杜成斌  任青文 《水利学报》2001,32(5):0001-0005
本文用非线性有限元对小湾高拱坝(坝高292.0m)设底缝时的工作性态进行研究,模型中考虑了缝面应力与变位的非线性重调整,考虑了坝体、坝基材料非线性和底缝接触非线性的耦合,模拟了缝的开裂、滑移等非线性。对设缝深度、干缝、湿缝等对高拱坝拱冠、坝踵和坝肩等关键部位的位移场和应力场的影响进行了分析研究,并对设缝前后建基面、坝踵附近的开裂区和屈服区进行分析,研究结果表明,设底缝可以有效地降低高拱坝坝踵的梁向拉应力,对坝踵附近应力影响较大,坝体其它部位应力和位移变化不大。  相似文献   

19.
为深入探索折线型高面板堆石坝的变形机理,针对某拟建水库大坝,采用有限元数值模型模拟了3个坝轴线布置方案的堆石体应力与应变、面板应力与变形及结构缝变形,分析了上述变化规律与坝轴线折角之间的非线性关系,初步探讨了大角度折线型面板堆石坝的坝体变形机理。结果表明,坝轴线转折点周边面板出现的拉应力会随着折角的增大而产生不同程度的增强;坝轴线转折处的地形条件及坝体对称性对坝体受力变形影响较大;结合地形地质条件,合理选择转折点和折角大小是折线型面板堆石坝设计的关键。  相似文献   

20.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号